3.7 Biological Resources and Wetlands

3.7.1 Introduction

This section describes the regulatory setting and the affected environment for biological resources, the potential impacts on these resources that would result from implementing the project, and the measures that would reduce such impacts. The term “biological resources” includes special-status plant and wildlife species, habitats of concern (including special-status plant communities, jurisdictional waters, critical habitat, conservation areas [i.e., Recovery Plan areas for federally listed species, conservation easements, public lands, conservation banks, and Habitat Conservation Plans], and protected trees), and wildlife movement corridors. This section summarizes detailed information contained in the Fresno to Bakersfield Section: Biological Resources and Wetlands Technical Report (Authority and FRA 2012a). Additional information regarding biological resources is included in the following sections:

- Section 3.4, Noise and Vibration, discusses noise and vibration that would occur in the project vicinity from the operation of the project. Potential impacts on wildlife due to project noise and vibration are based on information provided in the High-Speed Ground Transportation Noise and Vibration Impact Assessment Manual (FRA 2005).

- Section 3.8, Hydrology and Water Resources, discusses existing surface water hydrology, water quality, groundwater, and floodplains, and identifies potential impacts on these resources for each alternative.

- Section 3.14, Agricultural Lands, discusses the range of impacts on agricultural lands that may overlap with the biological conditions discussed and evaluated in this section and addresses potential impacts on pollinating bees.

- Section 3.18, Regional Growth, includes a discussion of growth-inducing impacts.

- Section 3.19, Cumulative Impacts, describes the cumulative impacts of this and other past, present, and reasonably foreseeable future projects.

The Program Environmental Impact Report/Environmental Impact Statement (EIR/EIS) documents for the Proposed California High-Speed Train System (Statewide Program EIR/EIS) (Authority and FRA 2005) concluded the project would have a significant impact on biological resources and committed to mitigation strategies and design practices to reduce effects.

Throughout this section, additional resources may be present in areas where permission to enter was not granted. Where permission to enter was not granted, field crews used public roads and adjacent parcels to characterize and map biological resources. These visual surveys were conducted to compare background information with existing data and the aerial signatures identified in high-resolution aerial imagery to map inaccessible areas. The resulting analysis of biological resources is based on plant community and land cover type data collected from the field (where permission to enter was granted). Potential for occurrences of species is based on the presence of suitable habitat within the species’ documented ranges. This approach allows quantification and comparative evaluation of impacts to biological resources.

As discussed in Section 3.1.5 and the Executive Summary, the analysis in this chapter includes revisions based on design refinements and analytical refinements. Gray shading is used as a guide to help the reader navigate the revisions.
3.7.1.1 Key Definitions

Key definitions of special-status species and habitats of concern are provided below. Each of these resources is further defined in the Fresno to Bakersfield Section: Biological Resources and Wetlands Technical Report (Authority and FRA 2012a).

Special-Status Species: Special-status species are plants and animals that are legally protected under the federal Endangered Species Act of 1973 (federal ESA), the California Endangered Species Act (CESA), the California Native Plant Protection Act, and/or other regulations, such as those species that meet the definitions of rare, threatened, or endangered under CEQA Guidelines Sections 15380 and 15125. The special-status species designation does not extend to bird species protected under the Migratory Bird Treaty Act (U.S.C. Sections 703 to 712); however, impacts on these species are discussed under special-status wildlife species sections of this document. Further detail can be found in the Fresno to Bakersfield Section: Biological Resources and Wetlands Technical Report (Authority and FRA 2012a).

Habits of Concern: Habitats of concern consist of special-status plant communities, riparian areas, jurisdictional waters, critical habitat, conservation areas (i.e., Recovery plan areas for federally listed species, conservation easements, public lands, conservation banks, and Habitat Conservation Plans [HCPs]), protected trees, and wildlife movement corridors.

- **Special-Status Plant Communities**: Special-status plant communities are determined to be significant and/or to represent rare vegetation types (California Natural Diversity Database [CNDDB] [CDFG 2012a]) or to have limited distribution statewide or within a county or region and include riparian areas that are jurisdictional to the California Department of Fish and Wildlife (CDFW) under CFGC 1600 et seq. These communities are often vulnerable to the environmental effects of projects (CDFG 2000). A list of special-status plant communities in California is maintained by the California Department of Fish and Wildlife (CDFW) in the Vegetation Classification and Mapping Program: Natural Communities List (CDFG 2010a). Additional information can be found in the Fresno to Bakersfield Section: Biological Resources and Wetlands Technical Report (Authority and FRA 2012a).

- **Riparian Areas**: Riparian areas are regulated under the CFGC (Streambed Alternation Agreement/Section 1600 et seq.). A riparian area consists of the transitional habitat between terrestrial and aquatic ecosystems. For analysis purposes in this section of the EIR/EIS, riparian areas are the vegetated areas between a seasonal riverine feature and the outer drip line of the adjacent vegetation. Riparian vegetation supports a unique set of physical and biological processes, including temperature regulation and wildlife habitat, and provides valuable aquatic food web services (inputs for nutrient cycling and food availability) to adjacent aquatic ecosystems.

- **Jurisdictional Waters**: Wetlands and other waters in the project vicinity, including waters of the United States (waters of the U.S.), waters of the state, and state streambeds and lakes, are regulated by the federal government (U.S. Army Corps of Engineers [USACE]) and the State of California (State Water Resources Control Board [SWRCB]). When considering wetlands and other waters, these features are collectively termed jurisdictional waters. Wetlands and other waters as delineated during the jurisdictional delineation (see the Fresno to Bakersfield Preliminary Jurisdictional Waters and Wetlands Delineation Report [Authority and FRA 2011]) are assumed to fall under the jurisdiction of the USACE and SWRCB for purposes of this discussion. Confirmation of these waters as jurisdictional by the USACE and SWRCB will be conducted when the regulatory permitting process is conducted. Definitions of the categories that are included in the jurisdictional waters sections are presented below.
- **Waters of the U.S.**: The federal Clean Water Act (CWA) defines waters of the U.S. as follows: (1) all waters that are currently used, or were used in the past, or may be susceptible to use in interstate or foreign commerce, including all waters that are subject to the ebb and flow of the tide; (2) all interstate waters including interstate wetlands; (3) all other waters such as intrastate lakes, rivers, streams (including intermittent streams), mudflats, sandflats, wetlands, sloughs, prairie potholes, wet meadows, playa lakes, or natural ponds, the use, degradation or destruction of which could affect interstate or foreign commerce; (4) all impoundments of waters otherwise defined as waters of the U.S.; (5) tributaries to the foregoing types of waters; and (6) wetlands adjacent to the foregoing waters (33 CFR 328.3[a]). Wetlands are a sub-classification of waters of the U.S., as described below. The term other waters of the U.S. is used to describe waters of the U.S. exclusive of wetlands.

- **Wetlands**: According to the USACE Wetland Delineation Manual (Environmental Laboratory 1987) and the Regional Supplement to the USACE Wetland Delineation Manual: Arid West Region (Version 2.0) (USACE 2008b), three criteria must be satisfied to classify an area as a jurisdictional wetland: (1) a predominance of plant life that is adapted to life in wet conditions (hydrophytic vegetation), (2) soils that saturate, flood, or pond long enough during the growing season to develop anaerobic conditions in the upper part (hydric soils), and (3) permanent or periodic inundation or soils saturation, at least seasonally (wetland hydrology).

- **Waters of the State**: Waters of the state are broadly defined by the Porter-Cologne Water Quality Control Act (Section 13050[e] of the California Water Code) to mean any surface water or groundwater, including saline waters within the boundaries of the state. Under this definition, isolated wetlands that may not be subject to regulations under federal law are considered waters of the state and regulated accordingly. On January 28, 2013, the California Water Boards released a revised preliminary draft of their Wetland Area Protection Policy, which includes a proposed wetland definition. Under their definition, an area is a wetland if, under normal circumstances, (1) the area has continuous or recurrent saturation of the upper substrate caused by groundwater or shallow surface water or both; (2) the duration of such saturation is sufficient to cause anaerobic conditions in the upper substrate; and (3) the area either lacks vegetation or the vegetation is dominated by hydrophytes (SWRCB 2013). Because this definition is still in preliminary draft form, the term wetland as used in this document refers to the USACE definition of wetlands, given above. Within this document, all waters of the state are classified as wetlands or other waters of the U.S.

- **Critical Habitat**: Critical habitat includes areas identified under Section 7 of the Endangered Species Act (ESA Section 3[5][A]). Designated critical habitats are described in 50 CFR Sections 17 and 226. Specifically, critical habitat includes areas for federally listed special-status species consisting of the specific areas within the geographic area occupied by the species, at the time it is listed in accordance with the provisions of Section 4 of the federal ESA, on which are found those physical or biological features (constituent elements) that are essential to the conservation of the species and that may require special management consideration or protection; and specific areas outside of the geographical area occupied by the species at the time it is listed in accordance with the provisions of Section 7 of the federal ESA, on a determination by the Secretary of the Department of Interior that such areas are essential for the conservation of the species.

- **Conservation Areas**: Conservation areas include areas that have been identified as part of HCPs, Natural Community Conservation Plans (NCCPs), or other approved local, regional, state, or federal HCPs. Conservation areas also include recovery plan areas for federally listed
special-status species, public lands (refuges and ecological reserves), and conservation and mitigation banks).

- **Recovery Plan Areas:** Section 4(f) of the federal ESA directs the Secretary of the Interior and the Secretary of Commerce to develop and implement recovery plans to promote the conservation of endangered or threatened species. The U.S Fish and Wildlife Service (USFWS) and the National Oceanic and Atmospheric Administration’s National Marine Fisheries Service (NMFS) are responsible for administering the federal ESA. In some instances, recovery plans identify specific areas and describe what research and management actions are necessary to support recovery, but do not themselves commit manpower or funds. Recovery plans are used in setting funding priorities and provide direction to local, regional, and state planning efforts.

- **Conservation Easements:** A conservation easement is a binding, legal agreement between a landowner and a land trust or government agency that limits uses of the land to protect its conservation values and or achieve specific conservation objectives. A conservation easement allows landowners to continue to own and use their land. However, certain actions are prohibited, and the landowner agrees to conserve or restore habitat, open space, scenic, or other ecological resource values on the land covered by the easement.

- **Public Lands:** Public lands are owned and typically maintained by the government, including cities, counties, states, and the federal government.

- **Conservation Banks:** Conservation banks are permanently protected lands that contain natural resource values. These lands are conserved and permanently managed for special-status species, jurisdictional waters, or other natural resources. Conservation banks function to offset adverse impacts on natural resources that occurred elsewhere; for this reason, these banks are sometimes referred to as offsite mitigation. In exchange for permanently protecting the land and managing it for natural resources, the natural resource regulatory agencies (e.g., USFWS, USACE, or CDFW) approves a specified number of natural resource (habitat, species, or resource) credits that bank owners may sell.

- **Habitat Conservation Plans:** HCPs are planning documents required as part of an application for an Incidental Take Permit under Section 10 of the federal ESA. As defined in this document, HCPs also include NCCPs, which identify measures necessary to conserve and manage natural biological diversity within the planning area while allowing compatible and appropriate economic development, growth, and other human uses. Each HCP describes the anticipated effects of the proposed taking, how those impacts will be minimized or mitigated, and how the HCP is to be funded.

- **Protected Trees:** Protected trees are trees or tree communities that have special significance and are afforded protection by and specifically identified in county and city ordinances, codes, or general plans. Cities and counties traversed by the proposed project alternatives include Fresno, Kings, Tulare, and Kern counties and the cities of Fresno, Hanford, Corcoran, Wasco, Shafter, and Bakersfield. The types of trees and specific physical characteristics required to meet the local definitions vary by city and county.

- **Wildlife Movement Corridors:** Wildlife movement corridors are areas defined by wildlife use for movement events on varying scales (e.g., daily foraging, seasonal migration, or dispersal). The wildlife movement corridors referenced in this document refer to areas that have been modeled for specific species based on different physical and biological parameters and that are published in statewide reports. For purposes of this document, the term habitat
linkage is used synonymously with wildlife movement corridor. Habitat linkages are areas of land used for a variety of purposes that potentially serve as a corridor for movement or migration of wildlife. Habitat linkages aid in the dispersal and distribution of wildlife and are crucial for maintaining healthy populations of multiple species.

3.7.2 Laws, Regulations, and Orders

This section provides a summary of federal, state, and local laws, regulations, and agency jurisdiction and management guidance that apply to biological resources. Table 3.7-1 lists federal laws and regulations and Table 3.7-2 lists state laws and regulations. For full definitions and a discussion of the permits and actions required to comply with the laws and regulations listed below, refer to the Fresno to Bakersfield Section: Biological Resources and Wetlands Technical Report (Authority and FRA 2012a).

3.7.2.1 Federal

Table 3.7-1

Federal Laws and Regulations

<table>
<thead>
<tr>
<th>Policy Title</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Federal Endangered Species Act of 1973 (federal ESA) (42 U.S.C. 4321 et seq.)</td>
<td>The federal ESA and subsequent amendments provide guidance for conserving federally listed species and the ecosystems upon which they depend. Section 9 (Prohibited Acts): Section 9 of the federal ESA and its implementing regulations prohibit the “take” of any fish or wildlife species listed under the federal ESA as endangered or threatened, unless otherwise authorized by federal regulations. The term “take” means to harass, harm, pursue, hunt, shoot, wound, kill, trap, capture, or collect, or to attempt to engage in any such conduct. Take includes the modification of a listed species’ habitat. Section 9, prohibits a number of specified activities with respect to endangered and threatened plants as well as adverse modifications to critical habitat. Section 7 (Interagency Consultation and Biological Assessments): Section 7 of the federal ESA requires federal agencies to consult with the USFWS or the National Oceanic and Atmospheric Administration's National Marine Fisheries Service (NMFS), as appropriate, to ensure that actions they authorize, fund, or carry out are not likely to jeopardize the continued existence of threatened or endangered fish, wildlife, or plant species or result in the destruction or adverse modification of designated critical habitat for any such species. In compliance with Section 7 of the federal ESA, FRA obtained a Biological Opinion from USFWS on February 28, 2013, and made a No Effect determination for species regulated by NMFS in June 2011. The FRA anticipates receipt of a supplemental Biological Opinion from the USFWS in late March or early April 2014. The Authority will require the Design/Build contractor to implement the conservation measures identified in the Biological Opinion. Section 10 (Habitat Conservation Plans): Section 10 of the federal ESA provides a process by which nonfederal entities may obtain an Incidental Take Permit from the USFWS or NMFS for otherwise lawful activities that might incidentally result in “take” of endangered or threatened species, subject to specific conditions.</td>
</tr>
</tbody>
</table>
Table 3.7-1
Federal Laws and Regulations

<table>
<thead>
<tr>
<th>Policy Title</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnuson-Stevens Fishery Conservation and Management Act (U.S.C. Section 1801 et seq.)</td>
<td>The amended Magnuson-Stevens Fishery Conservation and Management Act, also known as the Sustainable Fisheries Act (Public Law 104-297), requires that all federal agencies consult with NMFS on activities or proposed activities authorized, funded, or undertaken by that agency that may adversely affect Essential Fish Habitat of commercially managed marine and anadromous fish species. There are no Essential Fish Habitats regulated by NMFS under the Magnuson-Stevens Fishery Conservation and Management Act within the project action area.</td>
</tr>
<tr>
<td>Clean Water Act (CWA)</td>
<td>The federal CWA serves as the primary federal law protecting the quality of the nation’s surface waters, including wetlands. Section 401: Under the CWA Section 401, applicants for a federal license or permit to conduct activities that may result in the discharge of a pollutant into waters of the U.S. must obtain certification from the state in which the discharge would originate or from the interstate water pollution control agency with jurisdiction over affected waters. The Authority would apply for a Section 401 permit from SWRCB. Section 402: Under the CWA Section 402, all point source discharges, including, but not limited to, construction-related stormwater discharges to surface waters are regulated through the National Pollutant Discharge Elimination System (NPDES) program. Project sponsors must obtain an NPDES permit from the SWRCB. The Authority would apply for a Section 402 permit from SWRCB. Section 404: Under the CWA Section 404, the USACE and the U.S. Environmental Protection Agency (EPA) regulate the discharge of dredged and fill materials into the waters of the U.S. Project sponsors must obtain a permit from USACE for discharges of dredged or fill materials into jurisdictional waters over which the USACE determines that it will exert jurisdiction. The Authority would apply for a Section 404 permit from USACE. The USACE cannot issue a Section 404 permit until SWRCB issues a Section 401 permit. The SWRCB cannot issue the Section 401 or 402 permits until the Authority approves a Notice of Decision (NOD). The Authority will require the Design/Build contractor to implement the permit terms and conditions conservation measures identified in the Section 401, Section 402 and Section 404 permits.</td>
</tr>
<tr>
<td>Rivers and Harbors Act of 1899</td>
<td>Section 10 of the Rivers and Harbors Act of 1899 requires authorization from the USACE for the construction of any structure in or over any navigable waters of the U.S. There are no navigable waters of the U.S. regulated under Section 10 of the Rivers and Harbors Act within the Wetland Study Area for the project.</td>
</tr>
<tr>
<td>U.S. Fish and Wildlife Coordination Act (16 U.S.C. Sections 661 to 667[e] et seq.)</td>
<td>The U.S. Fish and Wildlife Coordination Act applies to any federal project where any body of water is impounded, diverted, deepened, or otherwise modified. Project proponents are required to consult with USFWS and the appropriate state wildlife agency. As state and federal agencies, the Authority and FRA are in compliance with U.S. Fish and Wildlife Coordination Act through consultation with USFWS and NMFS under Section 7 of the federal ESA and with CDFW for CESA consultation.</td>
</tr>
</tbody>
</table>
Table 3.7-1
Federal Laws and Regulations

<table>
<thead>
<tr>
<th>Policy Title</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Migratory Bird Treaty Act (16 U.S.C. Sections 703 to 712)</td>
<td>The Migratory Bird Treaty Act (MBTA) protects selected species of birds that cross international boundaries (i.e., species that occur in more than one country at some point during their life cycle). The law prohibits the take of such species, including the removal of nests, eggs, and feathers. The Authority and FRA would comply with the MBTA through implementation of the mitigation measures identified in Section 3.7.7, Mitigation Measures.</td>
</tr>
<tr>
<td>Migratory Bird Treaty Reform Act (Division E, Title I, Section 143 of the Consolidated Appropriations Act, 2005, PL 108–447)</td>
<td>The Migratory Bird Treaty Reform Act amends the MBTA (16 U.S.C. Sections 703 to 712) such that nonnative birds or birds that have been introduced by humans to the United States or its territories are excluded from protection under the Act. It defines a native migratory bird as a species present in the United States and its territories as a result of natural biological or ecological processes.</td>
</tr>
<tr>
<td>Bald and Golden Eagle Protection Act (16 U.S.C. Sections 668 to 668[d], 54 Statute 250)</td>
<td>The Bald and Golden Eagle Protection Act prohibits the destruction of bald eagles (Haliaeetus leucocephalus) and golden eagles (Aquila chrysaetos) and their occupied and unoccupied nests. The Authority and FRA would comply with the Bald and Golden Eagle Protection Act through implementation of the mitigation measures identified in Section 3.7.7, Mitigation Measures. The Authority will require the Design/Build contractor to implement the conservation measures identified in this document.</td>
</tr>
<tr>
<td>Protection of Wetlands (Executive Order 11990)</td>
<td>Executive Order 11990 aims to avoid direct or indirect impacts on wetlands from Federal or federally approved projects when a practicable alternative is available. If wetland impacts cannot be avoided, all practicable measures to minimize harm must be included. The Authority and FRA would comply with Executive Order (EO) 11990 through the Section 404 permitting process with USACE.</td>
</tr>
<tr>
<td>Protection of Migratory Bird Populations (Executive Order 13186)</td>
<td>EO 13186 directs each federal agency taking actions that have or may have adverse impact on migratory bird populations to work with USFWS to develop a memorandum of understanding that will promote the conservation of migratory bird populations. The Authority and FRA will be in compliance with EO 13186 through implementation of mitigation measures identified in Section 3.7.7, Mitigation Measures. The Authority will require the Design/Build contractor to implement the conservation measures identified in this document.</td>
</tr>
<tr>
<td>Invasive Species (Executive Order 13112)</td>
<td>EO 13112 requires federal agencies to work cooperatively to prevent and control the introduction and spread of invasive plants and animals. The Authority and FRA would comply with EO 13112 through the implementation of mitigation measures identified in Section 3.7.7, Mitigation Measures. The Authority will require the Design/Build contractor to implement the conservation measures identified in this document.</td>
</tr>
</tbody>
</table>
3.7.2.2 State

Table 3.7-2
State Laws and Regulations

<table>
<thead>
<tr>
<th>Policy Title</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>California Endangered Species Act (CESA)</td>
<td>CESA mandates that state agencies not approve a project that would jeopardize the continued existence of species if reasonable and prudent alternatives are available that would avoid a jeopardy finding. CESA also prohibits the unpermitted take of any fish, wildlife or plant species listed as endangered or threatened, or designated as candidates for listing, under CESA. Take refers to mortality, injury, capture, or entrapment of the listed species itself and not the modification of a listed species habitat. Similar to the federal ESA, CESA contains a procedure for CDFW to issue an Incidental Take Permit authorizing the take of listed and candidate species incidental to an otherwise lawful activity, subject to specified conditions. The Authority would comply with the requirements of CESA through early coordination with CDFW and submittal of a Section 2081 Incidental Take Permit application. The Authority will require the Design/Build contractor to implement the conservation measures identified in the Section 2081- Incidental Take Permit.</td>
</tr>
<tr>
<td>(California Fish and Game Code [CFGC] Sections 2050 to 2085)</td>
<td></td>
</tr>
<tr>
<td>California Fish and Game Code (CFGC)</td>
<td>Sections 3511, 4700, 5050, and 5515 (Fully Protected Species): The CFGC designates 37 fully protected species and prohibits the take or possession at any time of such species with certain limited exceptions. The Authority would comply with Sections 3511, 4700, 5050, and 5515 of the CFGC through project design measures to avoid take of all fully protected species, coordination with CDFW, and the mitigation measures identified in Section 3.7.7, Mitigation Measures. The Authority will require the Design/Build contractor to implement the identified conservation measures to avoid take of fully protected species.</td>
</tr>
<tr>
<td>(CFGC)</td>
<td>Sections 3503, 3503.5, and 3513 (Nesting Bird Protections): Section 3503 of the CFGC states that it is unlawful to take, possess, or needlessly destroy the nest or eggs of any bird, except as otherwise provided by code or any regulation made pursuant thereto. Section 3503.5 prohibits the take, possession, or needless destruction of any nests, eggs, or birds in the orders Falconiformes (New World vultures, hawks, eagles, ospreys, and falcons, among others) or Strigiformes (owls). Section 3513 prohibits the take or possession of any migratory nongame bird or part thereof, as designated in the MBTA. To avoid violation of the take provisions, it is generally required that project-related disturbance at active nesting territories be reduced or eliminated during the nesting cycle. The Authority would comply with Sections 3503, 3503.5, and 3513 of the CFGC through avoidance and minimization measures identified in Section 3.7.7, Mitigation Measures, to reduce take of protected species. The Authority will require the Design/Build contractor to implement the conservation measures identified in the document.</td>
</tr>
<tr>
<td>(CFGC)</td>
<td>Section 1600 et seq. (Lake and Streambed Alteration): Section 1600 et seq. of the CFGC requires notifying the CDFW prior to any project activity undertaken in or near a river, stream, or lake that flows at least intermittently through a bed or channel. The Authority would comply with the requirements of Section 1600 et seq. through coordination with CDFW and submittal of a Section 1602 Lake and Streambed Alteration Agreement application. The Authority will require the Design/Build contractor to implement the conservation measures identified in Section 1602 Lake and Streambed Alteration Agreement.</td>
</tr>
</tbody>
</table>
Table 3.7-2
State Laws and Regulations

<table>
<thead>
<tr>
<th>Policy Title</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Communities Conservation Planning Act (CFGC Sections 2800 to 2835)</td>
<td>The Natural Communities Conservation Planning Act was enacted to encourage broad-based planning to provide for effective protection and conservation of the state’s wildlife resources while continuing to allow appropriate development and growth. Natural Community Conservation Plans (NCCPs) may be implemented, which identifies measures necessary to conserve and manage natural biological diversity within the planning area, while allowing compatible and appropriate economic development, growth, and other human uses. The project does not require the preparation of the NCCP and does not occur within an approved NCCP. The Authority would comply with the requirements of Sections 2800 to 2835 of the CFGC through coordination with CDFW.</td>
</tr>
<tr>
<td>California Native Plant Protection Act (CFGC Sections 1900 to 1913)</td>
<td>The California Native Plant Protection Act (NPPA) requires all state agencies to use their authority to carry out programs to conserve endangered and rare native plants. The NPPA gives the CDFW the power to designate native plants as “endangered” or “rare” and prohibits the take of such plants, with certain exceptions. The Authority would comply with the requirements of Sections 1900 to 1913 of the CFGC through coordination with CDFW and, if warranted, submittal of a Section 2081 Incidental Take Permit application. The Authority will require the Design/Build contractor to implement the conservation measures identified in the Section 2081 Incidental Take Permit.</td>
</tr>
<tr>
<td>Porter-Cologne Water Quality Control Act</td>
<td>Section 13260(a) of the California Water Code (Porter-Cologne Water Quality Control Act) requires any person discharging waste or proposing to discharge waste, other than to a community sewer system, within any region that could affect the quality of the waters of the state to file a Report of Waste Discharge (ROWD). The SWRCB is responsible for the implementation of the act. The Authority would comply with the requirements of the Porter-Cologne Water Quality Control Act through coordination with the SWRCB and submittal of a Section 401 Water Quality Certification application and Section 402 NPDES permit. The Authority will require the Design/Build contractor to implement the terms and conditions associated with the Section 401 and Section 402 permits.</td>
</tr>
</tbody>
</table>

3.7.2.3 Regional and Local

Local and regional municipal plans pertaining to the preservation and protection of biological resources are addressed in the various general plans for Fresno, Kings, Tulare, and Kern counties, and for the cities of Fresno, Corcoran, Wasco, Shafter, and Bakersfield. These plans address such issues as habitat, protection of wildlife, oak woodland conservation, and conservation of wetlands and riparian communities. The Fresno to Bakersfield Section: Biological Resources and Wetlands Technical Report (Authority and FRA 2012a) provides more detail on the local plans and policies that were identified and considered in the preparation of this analysis.

3.7.2.4 Habitat Conservation Plans in the Project Vicinity

An HCP is a document that must accompany an Incidental Take Permit request under Section 10 of the federal ESA. Three HCPs have been identified in the project vicinity: the Metropolitan Bakersfield Habitat Conservation Plan (MBHCP) (City of Bakersfield and Kern County 1994); the draft Kern County Valley Floor Habitat Conservation Plan (VFHCP) (Kern County Planning Department 2006); and the Pacific Gas & Electric Company San Joaquin Valley Operations and Maintenance Habitat Conservation Plan (Jones & Stokes 2006). Section 3.7.4 provides a summary of the applicable regional HCPs that protect biological resources and/or wetlands.
3.7.3 Methods for Evaluating Impacts

This section describes the methods used for evaluating potential impacts on biological resources. The study areas used to identify biological resources are defined, and the background review and field surveys are summarized. Both the background literature review and field surveys identified potential biological resources within the footprints of the proposed project alternatives. This section also defines the types of potential impacts of the proposed project alternatives, describes the methods used to assess the various impacts, and presents the NEPA and CEQA criteria used to evaluate the significance of impacts.

3.7.3.1 Study Areas

The Fresno to Bakersfield Section study area described in Chapter 2 encompasses the entire potential area of disturbance associated with the construction footprint, including the proposed high-speed train (HST) right-of-way and associated facilities (traction power substations, switching and paralleling stations, and areas associated with modifying or relocating roadways for those facilities—including overcrossings and interchanges), heavy maintenance facility (HMF) sites, station alternatives, and construction areas (including laydown, storage, and similar areas [see the detailed description in Chapter 2]). To aid in the visualization of the various study areas, a schematic is provided as Figure 3.7-1.

To address regulatory requirements and assess potential impacts on biological resources, the Central Valley Biological Resources and Wetlands Survey Plan (Authority and FRA [2009] 2011) established biological resource study areas for the following types of resources:

- **Habitat Study Area** – Construction footprint plus a 1,000-foot buffer around project elements (review of aerial photos only if between 250 feet and 1,000 feet from buffer) to evaluate direct and indirect impacts on habitats and the special-status wildlife species that use them. The Habitat Study Area was divided into two areas: a core Habitat Study Area and an auxiliary Habitat Study Area. A third, or supplemental, Habitat Study Area was identified for select species that required further analysis based on agency- or protocol-recommended species-specific buffers:
 - The core Habitat Study Area includes the proposed construction footprint and a 250-foot buffer. This was the area that was physically surveyed.
 - The auxiliary Habitat Study Area, from the edge of the core area laterally 750 feet, was surveyed through extrapolation of observations made in the core Habitat Study Area, from aerial photograph interpretation, and by windshield surveys.
 - The supplemental Habitat Study Area extends laterally from the construction footprint up to 1.24 miles, depending on the target species, and identifies species-specific habitats based on aerial photograph interpretation and documented occurrences of the species, and on observations of special-status species and their habitats made in the field.

- **Wetland Study Area** – Construction footprint plus a 250-foot buffer to evaluate direct and indirect impacts on wetlands and special-status wildlife using vernal pools. Direct impacts on wetlands are within the construction footprint and indirect impacts are within the 250-foot buffer.

- **Special-Status Plant Study Area** – Construction footprint to evaluate direct and indirect impacts plus a 100-foot buffer to evaluate indirect impacts on sensitive plant resources (including special-status plants, special-status plant communities, protected trees, and elderberry shrubs).
Figure 3.7-1
Schematic of biological resource study areas
3.7.3.2 Literature Review

Biological resources potentially occurring in the study areas were identified through queries of existing databases and agency information. The sources used are described below. Further detail can be found in the Fresno to Bakersfield Section: Biological Resources and Wetlands Technical Report (Authority and FRA 2012a).

Special-Status Species and Special-Status Plant Communities

A list of special-status species designated and proposed critical habitat, special-status plant communities, and wildlife movement corridors known or potentially occurring in the project footprint was reviewed based on existing federal, state, and private databases and agency information. Database queries included all reported occurrences within 10 miles of the alternative alignments or potentially within the various U.S. Geological Survey 7.5-minute quadrangles (quads) that overlapped with the alternative alignments and their eight surrounding quads (collectively referred to as a nine-quad search area) for the Fresno to Bakersfield Section. The following data sources were reviewed:

- USFWS Sacramento Field Office Website: A list of federal candidate, proposed, threatened, and endangered special-status wildlife and plant species and their federally designated or proposed critical habitats known or having the potential to occur within a nine-quad search area around the Fresno to Bakersfield Section alternatives was generated (USFWS 2012).

- California Natural Diversity Database (CNDDB)/RareFind: A list of special-status plant and wildlife species, CDFW-designated special-status plant communities, and CNPS-listed special-status plant species was prepared through a two-fold inquiry consisting of a standard nine-quad search using the RareFind program and a geographic information system (GIS) mapping exercise of all occurrences within 10 miles of the alternative alignments. This two-fold inquiry was performed to ensure that all special-status species, including those listed by the CDFW as “sensitive,” whose geographic location data had been suppressed, were captured in the query (CDFG 2012a).

- CNPS’s Online Inventory of Rare and Endangered Plants of California: A list of CNPS special-status plant species that may occur in the nine-quad search area was generated using the online inventory database (CNPS 2012).

- California Wildlife Habitat Relationship (CWHR) System: The list of CDFW special-status wildlife species was augmented through a GIS exercise that overlaid the Fresno to Bakersfield alternatives with wildlife species (amphibians, reptiles, birds, and mammals) range maps available through the CWHR System (CDFG 2008). This query captured additional special-status species whose known geographic range occurs within 10 miles of the alternative alignments (CDFG 2008).

- USFWS Recovery Plans: Recovery Plan for Upland Species of the San Joaquin Valley, California (USFWS 1998), the Recovery Plan for Vernal Pool Ecosystems of California and Southern Oregon (USFWS 2005), and a number of Federal Register publications, public agency technical reports, survey guidelines, and other published reports.

- USFWS Birds of Conservation Concern (BCC) for Region 8 (California and Nevada) (USFWS 2008).

Jurisdictional Waters

A background review was conducted to identify locations of jurisdictional water features potentially present in the Wetland Study Area at both a watershed level and a project level. The
geographic extent of the background review for jurisdictional waters consisted of an area defined by the centerline of the alternative alignments plus a 0.5-mile buffer. The 0.5-mile buffer was chosen to include jurisdictional waters that may be present and to encompass the general nature of the jurisdictional waters surrounding the alternative alignments. The background review was conducted using information available in the GIS and conventional sources to determine the potential locations, types, and extent of known jurisdictional waters. The background review relied on information from the following sources:

- Natural Resources Conservation Service Hydrologic Unit Code Basins dataset (USDA and NRCS 1999), which identifies watersheds in the region.
- Water Quality Control Plan for the Tulare Lake Basin (CVRWQCB 2004), which identifies watershed and sub-watershed areas, surface water features, and beneficial uses.
- National Wetlands Inventory (USFWS 2009a), which identifies the approximate location and type of wetlands at the project level.
- National Hydrography Dataset (USGS and EPA 1999), which identifies the approximate locations and types of rivers, streams, canals, ditches, and artificial paths at the project level.
- Holland Central Valley Vernal Pool Complexes data layer, also known as the CDFW Central Valley Vernal Pool Habitat dataset (Holland 2009a), which identifies vernal pool areas at the project level.
- Recent aerial photographs (ESRI 2009; DigitalGlobe 2009; Bing 2010).
- National List of Plant Species That Occur in Wetlands (Reed 1988).
- U.S. Geological Survey 7.5-minute (1:24,000) topographical quadrangle sheets (Fresno North, Malaga, Fresno South, Conejo, Caruthers, Burris Park, Laton, Remnoy, Waukena, Taylor Weir, Corcoran, Pixley, Alpaugh, Hacienda Ranch NE, Delano West, Allensworth, Pond, Famoso, Wasco, Oil Center, Oldale, Rosedale, Rio Bravo, Edison, Lamont, Gosford, and Stevens).
- Precipitation records, including current and annual average rainfall for the region (USDA and NRCS 2010).

Protected Trees

To identify the requirements for protected trees, county and city ordinances and codes were reviewed as well as available general plans and habitat conservation plans.

Wildlife Movement Corridors

Known wildlife movement corridors were identified through a review of published technical reports and information available from regulatory agencies. The following data sources were obtained and used as a preliminary guide to understanding the location and species-specific requirements of the wildlife movement corridors that have been identified in the vicinity of the Fresno to Bakersfield Section:

- The wildlife movement corridors identified in *Missing Linkages: Restoring Connectivity to the California Landscape* (Penrod et al. 2001), which was prepared in response to the 2000 Missing Linkages conference.
South Coast Missing Linkage: A Linkage Design for the Tehachapi Connection (Penrod et al. 2003), which provided a more in-depth analysis of the Bakersfield/Tehachapi region based on the earlier Missing Linkages report.

Recovery Plan for Upland Species of the San Joaquin Valley, California (USFWS 1998), San Joaquin Valley Endangered Species Recovery Program (ESRP 2009), and San Joaquin Kit Fox (Vulpes macrotis mutica) 5-Year Review: Summary and Evaluation (USFWS 2010), which identified core, satellite, and linkage areas.

California Essential Habitat Connectivity Project (Spencer et al. 2010), which identifies natural land blocks and essential connectivity areas.

3.7.3.3 Field Surveys

The potential for project impacts on biological resources depends largely on the presence of suitable habitat in and adjacent to areas that would be affected by the project. The Authority’s biologists conducted field surveys to determine the presence or absence of biological resources and to document the location of any biological resources through habitat characterization and mapping. Habitat characterization and mapping were conducted throughout the study area. Access was granted to approximately 40% of the study area. Where permission to enter private land was not granted, field crews used public roads, and adjacent parcels to characterize and map biological resources. These visual surveys were conducted to compare background information with existing data and aerial signatures identified in high-resolution aerial imagery to map inaccessible areas. The primary field surveys discussed in this section were conducted in the spring and summer of 2010. Supplemental surveys were conducted in 2011 in response to engineering design changes and are discussed in the “Supplemental Surveys” section below.

The Fresno to Bakersfield Section: Biological Resources and Wetlands Technical Report (Authority and FRA 2012a) provides detailed descriptions of the various methods employed during the field surveys for biological resources. The various field surveys were conducted according to the methodologies described in the California High-Speed Train Central Valley Biological Resources and Wetlands Survey Plan, which was prepared, in part, for the Fresno to Bakersfield Section of the HST System (Authority and FRA [2009] 2011).

Special-Status Plant Species and Special-Status Plant Communities

Field surveys for special-status plants and special-status plant communities were conducted during the growing season (March, April, and May 2010 and, in select areas, in June 2010) in accordance with the CNPS Botanical Survey Guidelines (CNPS 2001), the Guidelines for Conducting and Reporting Botanical Inventories for Federally Listed, Proposed, and Candidate Plants (USFWS 1996), and the Protocols for Surveying and Evaluating Impacts to Special Status Native Plant Populations and Natural Communities (CDFG 2009). In addition, where applicable, surveys for the five federally listed species, Bakersfield cactus (Opuntia basilaris var. treleasei), California jewelflower (Caulanthus californicus), Hoover’s woolly-star (Eriastrum hooveri), Kern mallow (Eremalche kernensis), and San Joaquin woolly-threads (Monopolies congdonii) complied with the supplemental guidance provided in General Rare Plant Survey Guidelines and in the Supplemental Survey Methods (ESRP 2002). Additional supplemental surveys for botanical resources were conducted in 2010 and 2011 and are discussed below in the “Supplemental Surveys” section.

Habitat types identified during the field surveys were compared against the known habitat requirements for each special-status plant species and for special-status plant communities with potential to occur in the regional area. The potential for a particular special-status species and special-status plant community to occur within the Special-Status Plant Study Area was then
assessed and ranked as either no potential, low potential, moderate potential, or high potential (Appendix 3.7-A, Attachment 1).

Fish Species

Special-status fish species (e.g., listed salmonids), other than the Kern brook lamprey (*Entosphenus hubbsi*), are not expected to occur in the Habitat Study Area. The Habitat Study Area is outside the historical and current known geographic range of other special-status fish species, and suitable habitat is not present because of extensive water diversions and in-stream obstructions to migratory movement (see Fresno to Bakersfield Section: Biological Resources and Wetlands Technical Report [Authority and FRA 2012a]).

Habitat assessment field surveys for the only special-status fish species with potential to occur in the Habitat Study Area, the Kern brook lamprey, were conducted in areas in the species’ known geographic range in March 2010. The methodology employed is described in the following section, Special-Status Wildlife Species. No fish sampling was conducted.

Special-Status Wildlife Species

Field surveys were conducted in March 2010 to map and identify the habitats (i.e., biological communities and land use cover types) in the Habitat Study Area in accordance with *A Guide to Wildlife Habitats of California* (CDFG 1988) and the California Wildlife Habitat Relationship System (CDFG 2008). The California Wildlife Habitat Relationship System is a biological community-based model that associates California's wildlife species to standard habitats (e.g., biological communities that support plant and wildlife species) and rates suitability for reproduction, cover, and feeding. The field surveys were conducted to identify potentially suitable wildlife habitat for special-status wildlife species (Appendix 3.7-A, Attachment 2). Key habitat constituents mapped during field surveys included topography and the presence or absence of vegetative cover, foraging habitat, and migration barriers (i.e., canals and roadways). Focused surveys were not conducted. Detailed information, including recommendations for focused surveys, is presented in the *Fresno to Bakersfield Section: Biological Resources and Wetlands Technical Report* (Authority and FRA 2012a). Additional supplemental surveys were conducted to identify habitats in the Habitat Study Area in 2010 and 2011. These surveys are discussed below in the “Supplemental Surveys” section.

Jurisdictional Delineations

Jurisdictional delineations were conducted on accessible parcels in March 2010. The jurisdictional delineation was conducted for the purpose of obtaining a Preliminary Jurisdictional Delineation according to USACE Regulatory Guidance Letter No. 08-02 (USACE 2008c). The delineation of wetlands and other waters did not require or attempt to determine the jurisdictional status of the various features. Wetlands in the Wetland Study Area were delineated using the methods described in the *Corps of Engineers Wetlands Delineation Manual* (Environmental Laboratory 1987) and the *Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Arid West Region* (USACE 2008b). All wetlands were described using the Cowardin classification system (Cowardin et al. 1979).

Other waters of the U.S. in the Wetland Study Area were delineated using the methods described in *Field Guide to the Identification of the Ordinary High Water Mark in the Arid West Region of the Western United States* (USACE 2008a) and USACE Regulatory Guidance Letter No. 05-05, where appropriate (USACE 2005).

No formal guidelines exist for the identification of the extent of waters of the state, lakes, or streambeds (under either SWRCB or CDFW jurisdiction). For the purposes of this document, the extent of state-regulated areas is equivalent to the extent of waters of the U.S. However, CDFW
jurisdiction of riparian areas extends from the ordinary high water mark up to the outside edge of the riparian vegetation drip line. Riparian areas are discussed under special-status plant communities.

Methods associated with the wetland delineation study are discussed in detail in a separate Fresno to Bakersfield Preliminary Jurisdictional Waters and Wetlands Delineation Report (Authority and FRA 2011) and also in the Fresno to Bakersfield Section: Biological Resources and Wetlands Technical Report (Authority and FRA 2012a). Additional supplemental surveys were also conducted to delineate jurisdictional waters in 2010 and 2011. These surveys are discussed below in the “Supplemental Surveys” section.

Condition Assessments and Watershed Profiles

The Fresno to Bakersfield Section: Watershed Evaluation Report (Authority and FRA 2013d) discusses the methods and analyses used to develop a watershed profile, identifies the existing conditions of the jurisdictional waters, quantifies direct and indirect impacts on jurisdictional waters, and estimates the post-project condition of jurisdictional waters (Appendix 3.7-C). The Level 1 Watershed Profile uses a number of national and statewide or regional databases to estimate the type, distribution, extent (quantity), and condition of the jurisdictional waters in each watershed. This information helps identify the regional setting of the aquatic resource impacts expected to occur as part the implementation of the project.

Because access to all jurisdictional waters was not granted, the existing conditions of jurisdictional waters were determined using a two-step process. First, a site-specific condition assessment of a representative sample of jurisdictional water features found in the WSA using the California Rapid Assessment Method (CRAM) was conducted. Second, the CRAM results were extrapolated and assigned to a relative condition class (i.e., poor, fair, good, or excellent) for all aquatic resource features based on feature type and interpretation of aerial photographs. Quantifying impacts, assessing the condition of jurisdictional waters, and extrapolating the conditions of aquatic features constitute the Level 2 Impact Evaluation.

A total of 42 assessment areas were assessed within the Fresno to Bakersfield Section using CRAM. This method scores features based on four key attributes: landscape and buffer, hydrology, physical structure, and biotic structure.

To extrapolate the results from the CRAM assessment and provide relative condition values for all jurisdictional waters in the Wetland Study Area, the range of CRAM scores identified in the field for each sampled jurisdictional water type was identified and converted to a range of potential relative conditions for those jurisdictional water types. The relative condition of individual jurisdictional water features was determined from the range of conditions observed for that feature type through consideration of aerial photographs and other factors (e.g., land use and wildlife habitat mapping, proximity to hydrologic modifications) and the use of best professional judgment.

The relative condition of an aquatic feature can be used to estimate the potential CRAM score:

- Features in “excellent” relative condition would likely have a CRAM score between 81 and 100.
- Features in “good” relative condition would likely have a CRAM score between 62 and 80.
- Features in “fair” relative condition would likely have a CRAM score between 44 and 61.
- Features in “poor” relative condition would likely have a CRAM score between 25 and 43.

See Appendix A, Evaluation of Wetland Condition Using the California Rapid Assessment Method, in the Fresno to Bakersfield: Watershed Evaluation Report (Authority and FRA 2013d) (provided as Appendix 3.7-C) for more information.
Protected Trees

During surveys in 2010 and 2011, protected trees in the Special-Status Plant Study Area were identified based on regional and local regulations. Local and regional municipal plans pertaining to the preservation and protection of protected trees in the various general plans for Fresno, Kings, Tulare, and Kern counties and the Cities of Fresno, Corcoran, Wasco, Shafter, and Bakersfield are described in detail in the Fresno to Bakersfield Section: Biological Resources and Wetlands Technical Report (Authority and FRA 2012a).

Wildlife Movement Corridors

Many wildlife species have the potential to use wildlife movement corridors and habitat linkages within the Habitat Study Area. Areas identified in the literature review (Penrod et al. 2001; Penrod et al. 2003; ESRP 2009; USFWS 1998; Spencer et al. 2010) were evaluated in the field in March and April 2010 and 2011 (where access was permitted) and by aerial photography (where access was not allowed) to determine their utility as movement corridors for all wildlife, including those without special-status, on both a local and regional population level. The field surveys addressed the availability and suitability of these potential movement corridors for wildlife species and assessed corridor and habitat linkage quality at a landscape level. This evaluation was augmented, as feasible, by identifying additional areas, such as creeks and other drainages in the Habitat Study Area, which may be used by wildlife as movement corridors. For a more detailed discussion of the methods used to assess wildlife movement corridors in the Habitat Study Area, see Sections 3.3.4 and 3.4.7 of the Fresno to Bakersfield Section: Biological Resources and Wetlands Technical Report (Authority and FRA 2012a).

Supplemental Surveys

Supplemental biological resource surveys were conducted in April and July 2010 and March, November, and December 2011. These surveys were conducted in response to changes in engineering designs and the addition of properties with permission to enter. During these surveys, multidisciplinary teams conducted surveys for jurisdictional waters and botanical and wildlife resources. For a more detailed discussion of the supplemental surveys see Section 3.4.8 of the Fresno to Bakersfield Section: Biological Resources and Wetlands Technical Report (Authority and FRA 2012a).

3.7.3.4 Methods for Evaluating Impacts

The fundamental method for evaluating impacts included a process for qualifying or quantifying the direct and indirect project impacts on biological resources and for comparing those findings against the severity of the impact and/or a specific threshold. The severity of the impact is largely dependent on whether the impact is temporary (construction period impacts) or permanent (project impacts). For example, during the habitat assessment process, terrestrial and aquatic wildlife habitats were mapped within the Habitat Study Area (refer to Section 3.7.3.1, Study Areas). The plant community and cover-type mapping units were then overlaid on construction footprint maps using GIS applications. Acreages affected during the construction period and project operations were then calculated and are presented in tabular form for evaluation purposes in Section 3.7.5, Environmental Consequences.

A similar GIS-related process was used for evaluating impacts on special-status species, although these impacts were based on the potential for occurrence in suitable habitat. Special-status species and their potential for occurrence are described in Appendix 3.7-A. Appendix 3.7-B also provides a range of potential impacts in acres on special-status species based on the specific affinity each species has to plant communities and land cover types identified within the study area. For wildlife movement, existing and accessible drainage corridor crossings (i.e., bridges and culverts) were assessed with respect to their relative function to facilitate wildlife movement.
through the landscape. In this manner, the information presented can be quantified as appropriate and a comparative evaluation can be made. Qualitative discussions are provided for indirect impacts, such as noise, motion, and startle, and any potential hydrologic issues, such as erosion and sedimentation. For these indirect impacts on species’ habitat, the severity is evaluated without having specific numeric or quantitative data.

Biologists conducted a desktop review utilizing aerial photography to provide context to impacts on biological resources. Specifically, the biologists looked for signs of disturbance (e.g., lines in rows, vehicle tracks), degradation (e.g., trash, vehicular use, artificially barren areas), and fragmentation (e.g., landscape level assessment of proximity to other natural areas, linear infrastructure).

Through coordination with USACE and EPA, the following approach was developed to evaluate the quantity and quality of impacts on jurisdictional waters. Impacts on jurisdictional waters were quantified through a detailed evaluation of the project activities and elements (e.g., stations, HST tracks, temporary construction areas) and the associated jurisdictional water type (e.g., canal/ditch, seasonal wetland). For the majority of jurisdictional waters, direct impacts were quantified and qualified in the manner described above by overlaying the mapped features on the construction footprint. However, due to their sensitivity to disturbance, vernal pools and swales are difficult to restore to pre-project conditions following temporary impacts. Therefore, all impacts on these features are considered permanent, and are therefore described solely under Project Impacts.

For all jurisdictional water features, indirect impacts were quantified by calculating the acreage of the features that fall within 250 feet of the project footprint. These indirect impacts and their combined acreages are discussed under project impacts in Section 3.7.5, Environmental Consequences. For vernal pools and swales, an additional category—“indirect bisected”—is presented under indirect impacts to quantify impacts on features that are bisected by the boundary of the project footprint (i.e., where a vernal pool or swale straddles the project footprint boundary). This category presents the acreage for the portions of these features that lie outside the project footprint, but within 250 feet of the project footprint. Because these portions occur outside of the project footprint, these impacts are classified as indirect; however, these impacts will be mitigated in a manner similar to the direct impacts, in accordance with USACE guidance. Figure 3.7-2 illustrates the impact calculation method for the various jurisdictional waters. The Fresno to Bakersfield Section: Watershed Evaluation Report provides additional information related to the impact calculation methods (Authority and FRA 2013d).

Impacts are presented in Section 3.7.5, Environmental Consequences, in a manner that allows for a comparison of the HST alternative alignments. The text and tables in Section 3.7.5 compare differences in impact acreages between an alternative alignment and its corresponding segment of the BNSF Alternative: positive (+) differences indicate that the alternative alignment results in greater impact acres than its corresponding segment of the BNSF Alternative; negative (-) differences indicate that the alternative alignment results in fewer impact acres than its corresponding segment of the BNSF Alternative.

The significance of the impact and the mitigation proposed are based on the standards of significance outlined in the next two subsections (see Section 3.7.3.5, Methods for Evaluating Effects under NEPA, and Section 3.7.3.6, CEQA Significance Criteria). For each biological resource, a significance determination is presented for the BNSF Alternative and for each alternative alignment. Additional information regarding the methods used for evaluating impacts, including a detailed description of the qualitative and quantitative methods and the assumptions and limitations in determining the potential construction and operation impacts, is provided in the Fresno to Bakersfield: Biological Resources and Wetlands Technical Report (Authority and FRA
Construction and Project Impacts

Figure 3.7-2
Direct and indirect impact evaluations for jurisdictional waters
2012a) and the Fresno to Bakersfield Section: Watershed Evaluation Report (Authority and FRA 2013d).

3.7.3.5 Methods for Evaluating Effects under NEPA

Pursuant to NEPA regulations (40 CFR 1500–1508), project effects are evaluated based on the criteria of context and intensity. Beneficial and adverse effects are considered. Context means the affected environment in which a proposed project occurs. Intensity refers to the severity of the effect, which is examined in terms of the type, quality, and sensitivity of the resource involved, location and extent of the effect, duration of the effect (short- or long-term), and other considerations. The intensity of effects is described as negligible, moderate, or substantial. For biological resources, the terms negligible, moderate, and substantial are defined as follows:

- Effects of negligible intensity related to biological resources are defined as a slight change from existing biological conditions resulting in little or no regional effects and minor effects on seasonal shifts in populations, biotic communities, and wildlife movement patterns.

- Effects of moderate intensity are defined as incremental regional effects and measurable loss of terrestrial/aquatic plant communities, jurisdictional waters/wetlands, special-status species, or removal of lands known to accommodate wildlife movement.

- Effects of substantial intensity are influential regional effects and relatively high-intensity loss of terrestrial/aquatic plant communities, jurisdictional waters/wetlands, special-status species, or wildlife movement corridors.

When there is no measurable effect, no impact under NEPA is found to occur.

3.7.3.6 CEQA Significance Criteria

For the purposes of this project, the following thresholds are used to define a significant impact on biological resources. These thresholds are based on issues identified in Appendix G of the CEQA Guidelines. The project would result in a significant impact on biological resources if it would:

- Have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special-status species in local or regional plans, policies, or regulations, or by the CDFW or USFWS.

- Have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, or regulations, or by the CDFW or USFWS.

- Have a substantial adverse effect on federally protected wetlands, as defined by CWA Section 404 (including seasonal wetlands, canals, ditches, lacustrines, retention and detention basins, and seasonal riverine) through direct removal, filling, hydrological interruption, indirect or cumulative effects, or other means.

- Interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites.

- Conflict with any local policies or ordinances protecting biological resources, such as a tree preservation policy or ordinance.

- Conflict with the provisions of an adopted HCP, NCCP, or other approved local, regional, state, or federal HCP.
Mandatory findings of significance within Section 15065 of the CEQA guidelines require the lead agency to determine whether a project may have a significant effect on the environment where substantial evidence indicates that negative impacts may occur to biological resources. The negative conditions are defined as: (1) the project has the potential to substantially degrade the quality of the environment, reduce habitat of wildlife species, cause wildlife populations to drop below self-sustaining levels, threaten to eliminate a plant or animal community, substantially reduce or restrict the range of a listed species; (2) the project has the potential to achieve short-term environmental goals to the disadvantage of long-term environmental goals; and (3) the project has environmental effects that are individually limited but cumulatively considerable. Under CEQA’s mandatory findings of significance, the project would result in a significant impact if it would:

- Substantially reduce the habitat of a fish or wildlife species.
- Cause a fish or wildlife population to drop below self-sustaining levels.
- Threaten to eliminate a plant or animal community.
- Substantially reduce the number or restrict the range of an endangered, rare, or threatened species.

General indicators of significance, based on guidelines or criteria in NEPA, CEQA, CWA, CESA, federal ESA, and regulatory guidance from FRA include:

- Potential modification or destruction of habitat, movement corridors, or breeding, feeding, and sheltering areas for endangered, threatened, rare, or other special-status species.
- Potential measurable degradation of protected habitats, sensitive vegetation communities, wetlands, or other habitat areas identified in plans, policies, or regulations.
- Potential loss of a substantial number of any species that could affect the abundance or diversity of that species beyond the level of normal variability.
- Potential indirect impacts, both temporary and permanent, from excessive noise that elicits a negative response and avoidance behavior.

3.7.4 Affected Environment

This section summarizes the existing biological resources within the study areas, which include regional setting, special-status species, habitats of concern (special-status plant communities, jurisdictional waters, critical habitat, essential fish habitat, conservation areas [i.e., recovery plans for federally listed species, conservation easements, public lands, conservation banks, HCP areas, and protected trees]), and wildlife movement corridors. There are no applicable regional plans or policies pertaining to biological resources within the Fresno to Bakersfield Section study area. More details are provided in the Fresno to Bakersfield Section: Biological Resources and Wetlands Technical Report (Authority and FRA 2012a).

3.7.4.1 Regional Setting

Historically, the Central Valley was characterized by California prairie, marshlands, valley oak savanna, and extensive riparian woodlands (Hickman 1993). Today, more than 80% of the Central Valley is covered by farms and ranches (NRCS 2006). Overall, the study areas are highly disturbed and fragmented because of urban, agricultural, railroad, highway, and local road land cover types. In a few areas, native vegetation remains relatively undisturbed, although invasive and nonnative plant species may occur in these areas. Areas that have not been recently plowed or disked, or that show no sign of having been disturbed in recent decades, are referred to as “natural areas” in this document.
Major land uses between Fresno and Bakersfield include urban (industrial, commercial, and residential), rural residential, and agricultural. Some undeveloped natural areas occur in the vicinity of Corcoran and Allensworth. Several public lands, including Pixley National Wildlife Refuge (NWR), Allensworth State Historic Park, and Allensworth Ecological Reserve (Allensworth ER), are located in or immediately adjacent to the study areas. These public lands are managed for a variety of reasons: historical preservation, jurisdictional waters, and special-status species.

The study areas are broadly located in the Tulare Lake Basin of the South San Joaquin Valley between SR 99 and Interstate 5. The Tulare Lake Basin has a drainage area of approximately 17,400 square miles. All of the streams and rivers located in the study areas have been dredged, culverted, diverted, dewatered, or channelized, or have had their active floodplains severely reduced. Most of the water is diverted into an extensive network of irrigation canals, ditches, and retention and detention basins.

Watershed Profile

The Fresno to Bakersfield Section is in the Tulare Lake Basin; specifically, the project is in seven U.S. Geological Survey HUC-8 sub-watershed basins:

- Upper Dry Watershed (18030009)
- Tulare–Buena Vista Lakes Watershed (18030012)
- Upper Kaweah Watershed (18030007)
- Upper Tule Watershed (18030006)
- Upper Deer–Upper White Watershed (18030005)
- Upper Poso Watershed (1803004)
- Middle Kern–Upper Tehachapi–Grapevine Watershed (1803003)

All of these watersheds are in the Tulare Lake Basin, which covers a large and diverse area in California. The profiles of each of the watersheds in the areas of the Fresno to Bakersfield Section alternatives share many similarities across the Tulare Lake Basin. All of the watersheds are characterized by mostly protected headwaters. In the Sierra Nevada Foothills and the Mountains and the Coast Ranges ecological sections, the impacts that degrade the quality of the aquatic features are mostly dams and associated reservoirs. Proportionally within each watershed, these ecological sections do not contribute nearly as much acreage and linear feet of aquatic features as does the Great Valley ecological section.

Throughout the Tulare Lake Basin and across all the watersheds in the Wetland Study Area, the Central Valley has largely been manipulated through agriculture, transportation, and urban development. These conversions have resulted in the loss, manipulation, and degradation of jurisdictional waters through upper watershed impoundments, removal of riparian vegetation, and other hydrological manipulations such as watercourse diversion and irrigation canals. These activities have largely resulted in an extensive reduction of riparian habitat, loss of natural stream channel functions, the accretion of streams, and the loss of Tulare Lake, Buena Vista Lake, and Kern Lake as well as an extensive loss of other sensitive aquatic features (i.e., vernal pools and swales).

Furthermore, the historical and current land use patterns have blurred the boundaries of the watersheds through the construction of an extensive network of irrigation canals and ditches. Due to the north-south orientation and linear nature of the Fresno to Bakersfield Section, impacts on aquatic features occur across all seven watersheds. However, most of the Fresno to Bakersfield alternatives have relatively small footprints relative to the overall size of the watershed (the total disturbance from the project in all watersheds in the Central Valley is approximately 0.25%).

The Fresno to Bakersfield Section occurs entirely within the Central Valley ecological section.
3.7.4.2 Plant Communities and Land Cover Types

General Habitat Conditions - Terrestrial

The categories of terrestrial plant communities and land cover types that occur in the Habitat Study Area are summarized below, and are depicted on Figures A3-1a through A3-1o in Appendix 3.7-A, Attachment 3. The plant communities and land cover types identified in the Habitat Study Area include agricultural lands, developed areas, and natural and semi-natural areas. Habitat conditions in the Habitat Study Area are discussed in detail in Fresno to Bakersfield Section: Biological Resources and Wetlands Technical Report (Authority and FRA 2012a).

The following descriptions of plant communities and land cover types are based on A Guide to Wildlife Habitats of California and the California Wildlife Habitat Relationship System (Mayer and Laudenslayer 1988; CDFG 2008).

Agricultural Lands

Eight types of agricultural land are found in the Habitat Study Area: cropland, dryland grain crops, irrigated grain crops, irrigated hayfield, irrigated row and field crops, deciduous orchard, evergreen orchard, and vineyard (depicted on Figures A3-1a through A3-1o, Appendix 3.7-A, Attachment 3). These land uses, along with urban land uses, characterize the overwhelming majority of land in the Habitat Study Area. Agricultural lands may provide marginal habitat for seasonal forage and refugia for a limited number of common species and special-status species. Ruderal plant species, which are defined as species that grow where the natural vegetation has been removed or significantly degraded by past or current human activity, are found in these agricultural land types, especially where these types were bordered by roads, canals, ditches, or other highly disturbed features. Vegetation in these areas is highly variable but often includes a mix of nonnative annual grasses such as ripgut brome (Bromus diandrus), soft chess (Bromus hordeaceus), red brome (Bromus madritensis ssp. rubens), wild oats (Avena spp.), Italian ryegrass (Lolium multiflorum), smooth barley (Hordeum murinum), and weedy forbs such as bur clover (Medicago polymorpha), redstem filaree (Erodium cicutarium), yellow star thistle (Centaurea solstitialis), Russian thistle (Salsola tragus), tumbleweed (Amaranthus albus), Johnson grass (Sorghum jivaense), and silver-leaf horsenettle (Solanum elaeagnifolium).

Some agricultural species have become naturalized outside the areas where they are planted. These include black mustard (Brassica nigra), rape mustard (Brassica rapa), Johnson grass (Sorghum jivaense), cultivated timothy (Phleum pretense), common barley (Hordeum vulgare), common wheat (Triticum aestivum), and peach (Prunus persica). Native species also occurring in ruderal areas in agricultural lands often consist of (Distichlis spicata), fiddleneck (Amsinckia menziesii var. intermedia), Canada horseweed (Conyza canadensis), annual sunflower (Helianthus annuus), alkali mallow (Malva leprosa), and tarplants (Hemizonia spp.). Field and row crops such as alfalfa provide foraging habitat for raptors, particularly Swainson’s hawks (Buteo swainsoni). Fallow fields and inactive farmland may provide nesting habitat for several wildlife species including northern harrier (Circus cyaneus) and western burrowing owl (Athene cunicularia). These and other agricultural lands may provide foraging or dispersal habitat for loggerhead shrike (Lanius lud oviclus), white-tailed kite (Elanus leucurus), and American badger (Taxidea taxus).

Developed Areas

Developed areas are characterized by various types of cover, including barren and urban (e.g., commercial/industrial, transportation corridors] [depicted on Figures A3-1a through A3-1o,
Appendix 3.7-A, Attachment 3]. These areas generally include landscaped areas, yards, and various outbuildings and provide low-quality resources for wildlife. However, certain species, such as the American peregrine falcon (*Falco peregrinus anatum*) and western mastiff bat (*Eumops perotis californicus*) have adapted to developed areas and may use these areas for nesting or roosting habitat.

Ruderal and ornamental plant species, which are generally composed of nonnative species, are dominant in all these developed areas, particularly where land use was in transition and bare ground had recently been revealed, such as by roadsides, in median strips, and in vacant lots. Vegetation in these areas is highly variable, but generally includes nonnative grass species, including ripgut bromes (*Bromus* spp.), wild oats, Italian ryegrass, and smooth barley, and weedy forbs such as bur clover, redstem filaree, yellow star thistle, Italian thistle (*Carduus pyacnecephalus*), black mustard, rape mustard, white goosefoot (*Chenopodium album*), stinking goosefoot (*Chenopodium vulvaria*), and silver-leaf horesetail. Escaped ornamentals in these areas often include oleander (*Nerium oleander*), elms (*Ulmus* spp.), bachelor’s buttons (*Centaurea cyanus*), spotted knapweed (*Centaurea maculosa*), butterfly bush (*Buddleja davidii*), Athel tree (*Tamarix aphylla*), tree tobacco (*Nicotiana glauca*), and Himalayan blackberry (*Rubus armeniacus*).

Barren

Barren areas are defined by the permanent absence of vegetation. Areas mapped as barren during the field survey include areas of bare earth resulting from industrial activities such as gravel extraction. Barren habitats support few native wildlife or plant species, although rock dove, Brewer’s blackbird (*Euphagus cyanocephalus*), killdeer (*Charadrius vociferus*), and western fence lizard (*Sceloporus occidentalis*) were observed in barren areas during the field survey effort.

Urban

Urban areas include municipalities; industrial, residential, and agricultural structures (e.g., feedlots and poultry farms); and adjacent dedicated areas, such as yards, roads and road shoulders, highways, parking lots, and stockpiles. Both adaptive native species and nonnative wildlife species occur in urban centers of the Habitat Study Area. Within urban areas, mapped wetland features such as ditches and seasonal wetlands are present. In Bakersfield, special-status species like the San Joaquin kit fox have also become acclimated to developed urban areas (CDFG 2012a).

BNSF Urban

The BNSF Railway right-of-way travels along the length of the Central Valley in a north-south direction, extends south from Fresno through Hanford, and parallels SR 43 from north of Corcoran to the town of Greenacres just west of Bakersfield. In general, the BNSF Railway right-of-way is 50 feet wide, and the rail tracks are set on an embankment that is a minimum of 5 feet above the surrounding grade. The embankment is constructed of compacted soil and imported gravel fills. Numerous culverts bisect the base of the berms for drainage purposes. Crossings of larger drainages exist as freestanding bridges. Most road crossings of the BNSF Railway right-of-way consist of at-grade crossings that allow vehicles to drive over the berms and tracks.

For the purposes of this analysis, all developed or agricultural lands (e.g., crop, urban) in the BNSF Railway right-of-way were mapped under the BNSF Urban classification. All areas of developed or agricultural lands (e.g., crop, urban) in the right-of-way are controlled by the BNSF Railway, which retains the right to modify land use (e.g., remove orchard trees or structures). All riverine, canal, and natural upland habitats (i.e., annual grassland, alkali desert scrub, and valley foothill riparian) in the BNSF Railway right-of-way were mapped as such and not as BNSF Urban.
At any given point along the BNSF Railway right-of-way, wildlife use is largely determined by adjacent habitats. However, in areas dominated by frequent soil disturbance, especially cropland habitats, the railroad berms may provide habitat for burrowing animals. The BNSF Railway right-of-way contains mapped wetland features such as seasonal wetlands and vernal pools.

Natural and Seminatural Areas

The terms natural and semi-natural areas are used to distinguish the land uses and plant communities described in the subsequent sections from communities where current human influences substantially influence the plant composition and structure. While the natural and semi-natural plant communities have been altered to some extent by past and present human activities, the composition and structure of these communities are generally not actively managed or controlled. A distinction is also made between those habitats that are largely characterized by native plants and those in which the dominant plants are introduced species.

Natural and semi-natural areas are characterized by various types of cover, including alkali desert scrub, annual grassland, valley oak woodland, valley foothill riparian, and pasture (depicted on Figures A3-1a to A3-1o in Appendix 3.7-A, Attachment 3). Ruderal plant species are found along the margins and sometimes within natural and semi-natural habitat types.

Alkali Desert Scrub

Alkali desert scrub vegetation in the Habitat Study Area is dominated by shrublands with understory cover of herbs and forbs, and by vernally inundated or saturated areas lacking a shrub layer (vernal pools). These latter areas are characterized by herbs and forbs interspersed with barren, vernally inundated, or saturated alkali patches. Primary plant species observed during the various surveys included spinescale saltbush (Atriplex spinifera), cattle saltbush (Atriplex polycarpa), iodine bush (Allenrolfea occidentalis), goldenbush (Isocoma acradenia), and bush seepweed (Suaeda moquinii).

Alkali desert scrub supports a wide variety of wildlife species including special-status species such as the blunt-nosed leopard lizard (Gambelia sila), the San Joaquin kit fox, the Tipton kangaroo rat (Dipodomys nitratoides nitratoides), and coast horned lizards (Phrynosoma blainvillii). Many wildlife species found in this habitat type are burrowers or burrow-dependent species, such as the western burrowing owl, western spadefoot toad (Spea hammondii), American badger, foxes (Vulpes sp.), coyote (Canis latrans), California ground squirrel (Spermophilus beecheyi), and a variety of kangaroo rats (Dipodomys spp.) species.

In the Habitat Study Area, this habitat was concentrated in the vicinity of Allensworth and in relatively undisturbed areas.

Annual Grassland

In the Habitat Study Area, annual grasslands are typically characterized by nonnative annual grass species. Dominant nonnative grass species include several species of brome (Bromus spp.), fescue (Festuca spp. and Vulpia spp.), oats (Avena spp.), and barley (Hordeum spp.). Native species, including goldfields and owl’s clover (Castilleja spp.), may be present in annual grasslands, but typically in lower densities. Annual grasslands in the Habitat Study Area have typically experienced some level of past disturbance associated with various agriculture practices, row cropping, or grazing. Although these areas typically have a history of disturbance, they continue to provide suitable habitat for a number of special-status plant and wildlife species. Like alkali desert scrub habitats, annual grasslands that have experienced lower levels of disturbance often exhibit vernally inundated or saturated areas (vernal pools).
Valley Oak Woodland

Valley oak woodland in the Habitat Study Area was located along the floodplain of the Kings River and associated sloughs and side channels (in the Hanford West Bypass alternatives). This habitat falls within the Habitat Study Area but not within the project footprint; therefore, it will not be directly impacted. This habitat is characterized by well-spaced stands of mature valley oak (Quercus lobata) with little or no sub-canopy, and a well-developed herbaceous layer. Dominant herbaceous species include brome, annual fescues (Vulpia spp.), oats (Avena spp.), and barleys. Other herbaceous plants, including soap root (Chlorogalum pomeridianum), filaree, miner's lettuce, prickly ox-tongue (Picris echioides), and spiny sow thistle (Sonchus asper), may be present. In the Habitat Study Area, valley oak woodland may intergrade with valley foothill riparian vegetation, or may abruptly transition to developed areas such as cropland or orchard.

Valley oak woodland provides food, cover, nesting sites, and dispersal habitat for a wide variety of special-status wildlife species, including Swainson's hawk.

Valley Foothill Riparian

Valley foothill riparian biological communities in the study areas are located along the riparian corridors and associated floodplains or terraces of the Kings River, Cross Creek, Tule River, Poso Creek, and Kern River, and along their associated sloughs and side channels. These areas are characterized by tall trees, including Fremont cottonwood (Populus fremontii), western sycamore (Platanus racemosa), and valley oak (Quercus lobata). Subcanopy trees include white alder (Alnus rhombifolia) and ash (Fraxinus sp.). Understory shrubs and herbaceous species typically include California blackberry (Rubus ursinus), elderberry (Sambucus sp.), poison oak (Toxicodendron diversilobum), buttonbush (Cephalanthus occidentalis), willows (Salix spp.), rushes (Juncus spp.), mugwort (Artemisia douglasiana), poison hemlock (Conium maculatum), and stinging nettle (Urticadioica ssp. holosericea). In the study areas, an abrupt transition from valley foothill riparian vegetation to cropland or orchard results in narrow bands of riparian vegetation.

Valley foothill riparian habitat provides food, water, migration and dispersal corridors, and escape, nesting, and thermal cover for an abundance of wildlife. Riparian vegetation also supports physical and biological processes, including temperature regulation and valuable aquatic food web services (inputs for nutrient cycling and food availability). Protected insects like the valley elderberry longhorn beetle (Desmocerus californicus dimorphus) are native to these habitats (CDFG 1988). Several sensitive natural communities overlap with this habitat type, including valley oak woodland, Fremont cottonwood forest, Goodding's willow thickets, and red willow thickets.

Pasture

Pastures are actively grazed fields associated with private property. Generally, these areas contain a mix of annual grasses, such as bromes, barley, oats, and annual fescues, with other herbaceous species. Typically, these areas are actively grazed by cattle or horses but not irrigated. These areas provide some potential to support special-status wildlife species and limited potential to support special-status plant species because of the high level of disturbance.

General Habitat Conditions - Aquatic

The categories of aquatic plant communities and land cover types that occur in the Habitat Study Area are summarized below, and are depicted on Figures A3-1a through A3-10 in Appendix 3.7-A, Attachment 3. Aquatic plant communities and cover types are based on the Guide to Wildlife Habitats of California and California Wildlife Habitat Relationship System (CDFG 1988, 2008), and include fresh emergent wetland, lacustrine, and riverine. All aquatic habitats provide physical and...
biological support for food web services including nutrient cycling, and food production and availability for a variety of organisms. These aquatic habitats are equivalent to one, or a combination of two, jurisdictional water types mapped within the Wetland Study Area, which are described in more detail below under Jurisdictional Waters. Habitat conditions in the Habitat Study Area are discussed in detail in the Fresno to Bakersfield Section: Biological Resources and Wetlands Technical Report (Authority and FRA 2012a).

Fresh Emergent Wetland

Fresh emergent wetlands occur in small patches associated with man-made structures, including detention basins, groundwater recharge reservoirs, and irrigation and drainage ditches. Typical species in these areas include willows, rushes, bulrushes (*Scirpus* spp.), cattails (*Typha* spp.), and docks (*Rumex* spp.). A large complex of fresh emergent wetland exists in the vicinity of Cross Creek. Fresh emergent wetlands outside the Cross Creek area are typically small vegetated areas that experience year-round ponding from irrigation water or, less frequently, from seasonal inundation during the winter rain events. Fresh emergent wetland habitat is equivalent to the emergent wetland jurisdictional waters type.

Lacustrine

Lacustrine areas are limited to man-made basins (e.g., retention/detention basins) used for water storage and groundwater recharge. They occur throughout the Habitat Study Area. These basins range in size from less than 1,000 square feet to hundreds of acres. They typically have earthen berms and little or no emergent vegetation. The Habitat Study Area has no natural permanent lakes. One observed large basin, which was partially bordered by a narrow band of willows, supported large colonies of nesting birds such as cormorants (*Phalacrocorax* spp.), white-faced ibis (*Plegadis chihi*), black-crowned night herons (*Nycticorax nycticorax*), and egrets (*Egretta* sp. or *Ardea* sp.). Other small basins had little or no sign of use by wildlife. Many of the smaller basins are surrounded by fences that limit wildlife access. Lacustrine habitat is equivalent to the jurisdictional waters type of the same name.

Riverine

Riverine areas consist of open-water or dry channel areas in canals and irrigation ditches, and open-water areas in the flow channel of rivers, such as the Kings and Kern rivers, and creeks, such as the Tule, Cross, and Poso. Because of extensive water diversion for agricultural purposes, riverine habitats in the Habitat Study Area do not exhibit natural flow regimes and may be dry throughout a given year. In these areas, vegetation is either absent or sparse along sandy bottoms because of water-level fluctuations, vehicle disturbance, or maintenance activities in an irrigation canal or ditch. Typical vegetation, when present, is dominated by weedy species such as mustards (*Brassicaceae*) and annual nonnative grasses. Riverine habitat is equivalent to two jurisdictional waters types: seasonal riverine and canals/ditches.

3.7.4.3 Native Fauna Assemblage

Although the impact analysis in this section focuses on special-status wildlife species, it is anticipated that impacts would occur on other native fauna within the project footprint. Native fauna observed during field surveys are discussed in the Fresno to Bakersfield Section: Biological Resources and Wetlands Technical Report (Authority and FRA 2012a). Typical native fauna observed during surveys included the great white egret (*Ardea alba*), red-winged blackbird (*Agelaius phoeniceus*), mourning dove (*Zenaida macroura*), American crow (*Corvus brachyrhynchos*), red-tailed hawk (*Buteo jamaicensis*), American kestrel (*Falco sparverius*), American robin (*Turdus migratorius*), western scrub jay (*Aphelocoma californica*), turkey vulture (*Cathartes aura*), Brewer’s blackbird (*Euphagus cyanocephalus*), white-faced ibis (*Plegadis chihi*), American coot (*Fulica americana*), California ground
squirrel (*Otospermophilus beecheyi*), Botta’s pocket gopher (*Thomomys bottae*), and western fence lizard (*Sceloporus occidentalis*).

3.7.4.4 Special-Status Species

Based on the literature review, 55 special-status plant species and 112 special-status wildlife species were evaluated for their potential to occur (Appendix 3.7-A, Attachments 1 and 2). A list was compiled of the special-status plant and wildlife species with potential to occur in the region based on CNDDB and CNPS occurrence data, the presence or absence of suitable habitat identified in the Habitat Study Area, and the species’ known geographic or elevation range. Each special-status species was ranked as having no potential, low potential, moderate potential, or high potential to occur. Special-status plant species with moderate or high potential to occur in the Special-Status Plant Study Area are listed in Table 3.7-3. Special-status wildlife species with moderate or high potential to occur in the Habitat Study Area are listed in Table 3.7-4. Special-status species and potential for occurrence within the biological resources study areas are described in more detail in Appendix 3.7-A, Attachments 1 and 2, and in the *Fresno to Bakersfield Section: Biological Resources and Wetlands Technical Report* (Authority and FRA 2012a).

Table 3.7-3

Special-Status Plant Species with Potential to Occur in the Special-Status Plant Study Area

<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Common Name</th>
<th>Federal Statusa</th>
<th>State/ CNPS Statusb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Federally and State-Listed Species</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atriplex tularensis</td>
<td>Bakersfield smallscale</td>
<td>—</td>
<td>SE/1B.1</td>
</tr>
<tr>
<td>Caulanthus californicus</td>
<td>California jewelflower</td>
<td>FE</td>
<td>SE/1B.1</td>
</tr>
<tr>
<td>Chamaesyce hooveri</td>
<td>Hoover's spurge</td>
<td>FT</td>
<td>1B.2</td>
</tr>
<tr>
<td>Monolopia congdonii</td>
<td>San Joaquin woolly-threads</td>
<td>FE</td>
<td>1B.2</td>
</tr>
<tr>
<td>Other Special-Status Plant Species</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Astragalus hornii var. hornii</td>
<td>Horn's milk-vetch</td>
<td>—</td>
<td>1B.1</td>
</tr>
<tr>
<td>Atriplex cordulata</td>
<td>Heartscale</td>
<td>—</td>
<td>1B.2</td>
</tr>
<tr>
<td>Atriplex coronata var. vallicola</td>
<td>Lost Hills crownscale</td>
<td>—</td>
<td>1B.2</td>
</tr>
<tr>
<td>Atriplex depressa</td>
<td>Brittle scale</td>
<td>—</td>
<td>1B.2</td>
</tr>
<tr>
<td>Atriplex erecticaulis</td>
<td>Earlimgart orache</td>
<td>—</td>
<td>1B.2</td>
</tr>
<tr>
<td>Atriplex minuscula</td>
<td>Lesser salt scale</td>
<td>—</td>
<td>1B.1</td>
</tr>
<tr>
<td>Atriplex persistens</td>
<td>Vernal pool smallscale</td>
<td>—</td>
<td>1B.2</td>
</tr>
<tr>
<td>Atriplex subtilis</td>
<td>Subtle orache</td>
<td>—</td>
<td>1B.2</td>
</tr>
<tr>
<td>Calochortus striatus</td>
<td>Alkali mariposa lily</td>
<td>—</td>
<td>1B.2</td>
</tr>
<tr>
<td>Chloropyron molle ssp. hispidum</td>
<td>Hispid bird's beak</td>
<td>—</td>
<td>1B.1</td>
</tr>
<tr>
<td>Cirsium crassicaule</td>
<td>Slough thistle</td>
<td>—</td>
<td>1B.1</td>
</tr>
<tr>
<td>Delphinium recurvatum</td>
<td>Recurved larkspur</td>
<td>—</td>
<td>1B.2</td>
</tr>
<tr>
<td>Eriastrum hooveri</td>
<td>Hoover’s woolly-star</td>
<td>FD</td>
<td>4.2</td>
</tr>
</tbody>
</table>
Table 3.7-3
Special-Status Plant Species with Potential to Occur in the Special-Status Plant Study Area

<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Common Name</th>
<th>Federal Status</th>
<th>State/ CNPS Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erodium macrophillum var. macrophyllum</td>
<td>Round-leaved filaree</td>
<td>—</td>
<td>1B.1</td>
</tr>
<tr>
<td>Eryngium spinosepalum</td>
<td>Spiny-sepaled button-celery</td>
<td>—</td>
<td>1B.2</td>
</tr>
<tr>
<td>Imperata brevifolia</td>
<td>California satintail</td>
<td>—</td>
<td>2.1</td>
</tr>
<tr>
<td>Lasthenia glabrata ssp. coulteri</td>
<td>Coulter’s goldfields</td>
<td>—</td>
<td>1B.1</td>
</tr>
<tr>
<td>Layia munzii</td>
<td>Munz’s tidy-tips</td>
<td>—</td>
<td>1B.2</td>
</tr>
<tr>
<td>Myosurus minumus ssp. apus</td>
<td>Little mouse tail</td>
<td>—</td>
<td>3.1</td>
</tr>
<tr>
<td>Pterygoneurum californicum</td>
<td>California chalk moss</td>
<td>—</td>
<td>1B.1</td>
</tr>
<tr>
<td>Tortula californica</td>
<td>California screw moss</td>
<td>—</td>
<td>1B.2</td>
</tr>
<tr>
<td>Sagittaria sanfordii</td>
<td>Sanford’s arrowhead</td>
<td>—</td>
<td>1B.2</td>
</tr>
<tr>
<td>Stylocline citroleum</td>
<td>Oil neststraw</td>
<td>—</td>
<td>1B.1</td>
</tr>
<tr>
<td>Stylocline masonii</td>
<td>Mason’s neststraw</td>
<td>—</td>
<td>1B.1</td>
</tr>
<tr>
<td>Tropidocarpum californicum</td>
<td>King’s gold</td>
<td>—</td>
<td>1B.1</td>
</tr>
</tbody>
</table>

Note:

“—” signifies “no status designation.”

This table does not include special-status plant species that were determined to have “No Potential” or “Low Potential” to occur within the Special-Status Plant Study Area.

Abbreviations:
- **Federal Status**
 - FD: Delisted. Status to be monitored for 5 years
 - FE: Listed as endangered under the Endangered Species Act
 - FT: Listed as threatened under the Endangered Species Act
- **State Status**
 - SE: Listed as endangered under the California Endangered Species Act
 - ST: Listed as threatened under the California Endangered Species Act
- **CNPS**
 - 1B: Rare, threatened, or endangered in California and elsewhere
 - 2: Rare, threatened, or endangered in California, but more common elsewhere
 - 3: More information is needed
 - 4: Limited distribution or infrequent throughout California
 - 0.1: Seriously endangered in California
 - 0.2: Fairly endangered in California
 - 0.3: Not very endangered in California

Abbreviations:
- CNPS = California Native Plant Society
Table 3.7-4
Special-Status Wildlife Species with Potential to Occur in the Habitat Study Area

<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Common Name</th>
<th>Federal Status</th>
<th>State Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Federally and State-Listed Species</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Branchinecta lynchi</td>
<td>Vernal pool fairy shrimp</td>
<td>FT, CH</td>
<td>—</td>
</tr>
<tr>
<td>Desmocerus californicus dimorphus</td>
<td>Valley elderberry longhorn beetle</td>
<td>FT</td>
<td>—</td>
</tr>
<tr>
<td>Lepidurus packardi</td>
<td>Vernal pool tadpole shrimp</td>
<td>FE</td>
<td>—</td>
</tr>
<tr>
<td>Ambystoma californiense</td>
<td>California tiger salamander</td>
<td>FT</td>
<td>ST</td>
</tr>
<tr>
<td>Gambelia (=Crotaphytus) sila</td>
<td>Blunt-nosed leopard lizard</td>
<td>FE</td>
<td>SE/FP</td>
</tr>
<tr>
<td>Aquila chrysaetos</td>
<td>Golden eagle</td>
<td>—</td>
<td>FP</td>
</tr>
<tr>
<td>Buteo swainsoni</td>
<td>Swainson’s hawk</td>
<td>—</td>
<td>ST</td>
</tr>
<tr>
<td>Charadrius alexandrinus nivosus</td>
<td>Western snowy plover</td>
<td>FT</td>
<td>CSC</td>
</tr>
<tr>
<td>Elanus leucurus</td>
<td>White-tailed kite</td>
<td>—</td>
<td>FP</td>
</tr>
<tr>
<td>Falco peregrinus anatum</td>
<td>American peregrine falcon</td>
<td>Delisted</td>
<td>SE/FP</td>
</tr>
<tr>
<td>Grus canadensis tabida</td>
<td>Greater sandhill crane</td>
<td>—</td>
<td>ST/FP</td>
</tr>
<tr>
<td>Haliaeetus leucocephalus</td>
<td>Bald eagle</td>
<td>Delisted</td>
<td>SE/FP</td>
</tr>
<tr>
<td>Ammospermophilus nelsoni</td>
<td>Nelson’s (San Joaquin) antelope squirrel</td>
<td>—</td>
<td>ST</td>
</tr>
<tr>
<td>Bassariscus astutus</td>
<td>Ringtail</td>
<td>—</td>
<td>FP</td>
</tr>
<tr>
<td>Dipodomys nitratoides exilis</td>
<td>Fresno kangaroo rat</td>
<td>FE</td>
<td>SE</td>
</tr>
<tr>
<td>Dipodomys nitratoides nitratoides</td>
<td>Tipton kangaroo rat</td>
<td>FE</td>
<td>SE</td>
</tr>
<tr>
<td>Vulpes macrotis mutica</td>
<td>San Joaquin kit fox</td>
<td>FE</td>
<td>ST</td>
</tr>
<tr>
<td>Other Special-Status Wildlife Species</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entosphenus hubbsi</td>
<td>Kern brook lamprey</td>
<td>—</td>
<td>CSC</td>
</tr>
<tr>
<td>Spea (=Scaphiopus) hammondii</td>
<td>Western spadefoot toad</td>
<td>—</td>
<td>CSC</td>
</tr>
<tr>
<td>Actinemys (=Clemmys/Emys) marmorata</td>
<td>Western pond turtle</td>
<td>—</td>
<td>CSC</td>
</tr>
<tr>
<td>Anniella pulchra pulchra</td>
<td>Silvery legless lizard</td>
<td>—</td>
<td>CSC</td>
</tr>
<tr>
<td>Masticophis flagellum ruddocki</td>
<td>San Joaquin whipsnake</td>
<td>—</td>
<td>CSC</td>
</tr>
<tr>
<td>Phrynosoma blainvillii</td>
<td>Coast (California) horned lizard</td>
<td>—</td>
<td>CSC</td>
</tr>
<tr>
<td>Agelaius tricolor</td>
<td>Tricolored blackbird</td>
<td>—</td>
<td>CSC</td>
</tr>
<tr>
<td>Anmodramus savannarum</td>
<td>Grasshopper sparrow</td>
<td>—</td>
<td>CSC</td>
</tr>
<tr>
<td>Asio flammeus</td>
<td>Short-eared owl</td>
<td>—</td>
<td>CSC</td>
</tr>
<tr>
<td>Asio otus</td>
<td>Long-eared owl</td>
<td>—</td>
<td>CSC</td>
</tr>
<tr>
<td>Athene cunicularia</td>
<td>Western burrowing owl</td>
<td>—</td>
<td>CSC</td>
</tr>
<tr>
<td>Aythya americana</td>
<td>Redhead</td>
<td>—</td>
<td>CSC</td>
</tr>
<tr>
<td>Bassariscus astutus</td>
<td>Ringtail</td>
<td>—</td>
<td>FP</td>
</tr>
</tbody>
</table>
Table 3.7-4
Special-Status Wildlife Species with Potential to Occur in the Habitat Study Area

<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Common Name</th>
<th>Federal Status<sup>a</sup></th>
<th>State Status<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Baeolophus inornatus</td>
<td>Oak titmouse</td>
<td>BCC</td>
<td>—</td>
</tr>
<tr>
<td>Charadrius montanus</td>
<td>Mountain plover</td>
<td>—</td>
<td>CSC</td>
</tr>
<tr>
<td>Chlidonias niger</td>
<td>Black tern</td>
<td>—</td>
<td>CSC</td>
</tr>
<tr>
<td>Circus cyaneus</td>
<td>Northern harrier</td>
<td>—</td>
<td>CSC</td>
</tr>
<tr>
<td>Coturnicops noveboracensis</td>
<td>Yellow rail</td>
<td>BCC</td>
<td>CSC</td>
</tr>
<tr>
<td>Dendrocygna bicolor</td>
<td>Fulvous whistling duck</td>
<td>—</td>
<td>CSC</td>
</tr>
<tr>
<td>Dendroica petechia brewsteri</td>
<td>Yellow warbler</td>
<td>—</td>
<td>CSC</td>
</tr>
<tr>
<td>Grus canadensis canadensis</td>
<td>Lesser sandhill crane</td>
<td>—</td>
<td>CSC</td>
</tr>
<tr>
<td>Icteria virens</td>
<td>Yellow-breasted chat</td>
<td>—</td>
<td>CSC</td>
</tr>
<tr>
<td>Ixobrychus exilis</td>
<td>Least bittern</td>
<td>—</td>
<td>CSC</td>
</tr>
<tr>
<td>Lanius ludovicianus</td>
<td>Loggerhead shrike</td>
<td>—</td>
<td>CSC</td>
</tr>
<tr>
<td>Melanerpes lewis</td>
<td>Lewis’s woodpecker</td>
<td>BCC</td>
<td>—</td>
</tr>
<tr>
<td>Numenius americanus</td>
<td>Long-billed curlew</td>
<td>BCC</td>
<td>—</td>
</tr>
<tr>
<td>Pica nuttalli</td>
<td>Yellow-billed magpie</td>
<td>BCC</td>
<td>—</td>
</tr>
<tr>
<td>Picoides nuttalli</td>
<td>Nuttall’s woodpecker</td>
<td>BCC</td>
<td>—</td>
</tr>
<tr>
<td>Poecetes gramineus affinis</td>
<td>Oregon vesper sparrow</td>
<td>—</td>
<td>CSC</td>
</tr>
<tr>
<td>Progne subis</td>
<td>Purple martin</td>
<td>—</td>
<td>CSC</td>
</tr>
<tr>
<td>Toxostoma lecontei</td>
<td>Le Conte’s thrasher</td>
<td>—</td>
<td>CSC</td>
</tr>
<tr>
<td>Xanthocephalus xanthocephalus</td>
<td>Yellow-headed blackbird</td>
<td>—</td>
<td>CSC</td>
</tr>
<tr>
<td>Antrozous pallidus</td>
<td>Pallid bat</td>
<td>—</td>
<td>CSC</td>
</tr>
<tr>
<td>Chaetodipus californicus femoralis</td>
<td>Dulzura pocket mouse</td>
<td>—</td>
<td>CSC</td>
</tr>
<tr>
<td>Corynorhinus townsendii</td>
<td>Townsend’s big-eared bat</td>
<td>—</td>
<td>CSC</td>
</tr>
<tr>
<td>Eumops perotis californicus</td>
<td>Western mastiff bat</td>
<td>—</td>
<td>CSC</td>
</tr>
<tr>
<td>Lasiurus blossevillii</td>
<td>Western red bat</td>
<td>—</td>
<td>CSC</td>
</tr>
<tr>
<td>Onychomys torridus tularensis</td>
<td>Tulare grasshopper mouse</td>
<td>—</td>
<td>CSC</td>
</tr>
<tr>
<td>Taxidea taxus</td>
<td>American badger</td>
<td>—</td>
<td>CSC</td>
</tr>
</tbody>
</table>

Notes:
^a Federal Status
- **FE** - Endangered
- **FT** - Threatened
- **CH** - Critical Habitat designated by the U.S. Fish and Wildlife Service
- **BCC** - Birds of Conservation Concern designated by the U.S. Fish and Wildlife Service

^b State Status
- **SE** - Endangered
- **ST** - Threatened
- **CSC** - California Species of Special Concern designated by the California Department of Fish and Game
- **FP** - Fully Protected species designated by the California Department of Fish and Game
3.7.4.5 Habitats of Concern

Habitats of concern evaluated in the Habitat Study Area include special-status plant communities, jurisdictional waters, critical habitat, essential fish habitat, conservation areas (i.e., Recovery Plan areas for federally listed species, conservation easements, public lands, conservation banks, and HCPs), and wildlife movement corridors. Habitats of concern in the Habitat Study Area receive special protection by federal, state, and local regulations. These habitats of concern, discussed below, are depicted on Figures 3.7-3a and 3.7-3b.

Special-Status Plant Communities

For the purposes of this EIR/EIS, special-status plant communities consist of two types of vegetation assemblages: (1) riparian communities, which are dominated by native woody vegetation and are adjacent to rivers and streams; and (2) sensitive natural communities, as defined by the CDFW, which are communities of limited distribution statewide or within a county or region. One riparian community, valley foothill riparian, and seven sensitive natural communities were identified in the Habitat Study Area (Figure 3.7-3a).

The information on riparian areas has been moved; it was originally presented in the Revised DEIR/Supplemental DEIS under ”Jurisdictional Waters,” but has been moved and slightly revised throughout the Final EIR/EIS to be presented under “Special-Status Plant Communities.”

Riparian: Riparian areas are generally associated with seasonal riverine features and occur in scattered locations throughout the Wetland Study Area (see description of Valley Foothill Riparian under Section 3.7.4.2, Plant Communities and Land Cover Types). They are regulated under the CFGC (Streambed Alteration Agreement/Section 1600 et seq.). A valley foothill riparian area comprises the habitats between a seasonal riverine feature and the outer drip line of riparian vegetation along Murphy Slough, Kings River, Cole Slough, Mussel Slough, Oak Slough, Tule River, Deer Creek, Poso Creek, Kern River, and other unnamed waterways. Riparian areas in the Wetland Study Area are characterized by cottonwood, sycamore, valley oak, and willow trees. Riparian vegetation supports physical and biological processes, including temperature regulation and valuable aquatic food web services (inputs for nutrient cycling and food availability). Riparian areas are generally in relatively fair to good ecological condition; are associated with waterways that have varying levels of hydrologic manipulation; provide fair to good biological resources for plants and wildlife; and due to existing land uses in the region, have been physically reduced and restricted to narrow areas along seasonal riverine features.

The seven sensitive natural vegetation communities identified in the Special-Status Plant Study Area (Figure 3.7-3a) were:

- Black willow thickets (Salix gooddingii Woodland Alliance).
- Bush seepweed scrub (Suaeda moquinii Shrubland Alliance).
- Fremont cottonwood forest (Populus fremontii Forest Alliance)
- Iodine bush scrub (Allenrollea occidentalis Shrubland Alliance).
- Red willow thickets (Salix laevigata Woodland Alliance).
- Valley oak woodland (Quercus lobata Woodland Alliance).
- Saltgrass flats (Distichlis spicata Herbaceous Alliance).

Special-status plant communities are described in more detail in the Fresno to Bakersfield Section: Biological Resources and Wetlands Technical Report (Authority and FRA 2012a). Mitigation and compliance related to the Section 1600 et seq. of the CFGC are discussed in Section 3.7.7, Mitigation Measures.
Figure 3.7-3a

Habitats of concern observed within the Special-Status Plant Study Area (special-status plant communities)
Figure 3.7-3b
Habitats of concern observed within the Wetlands Study Area (jurisdictional waters)
Jurisdictional Waters

Jurisdictional waters, including watercourses as described above, are afforded protection under federal and state laws by the USACE, CDFW, and SWRCB. Jurisdictional waters are generally considered an important resource for various plant and wildlife species and are discussed in Sections 3.7.5 and 3.7.6. Specifically, jurisdictional waters provide physical and biological support for food web services including nutrient cycling, and food production and availability for a variety of organisms. These sections discuss jurisdictional waters in relation to regulatory permitting requirements concerning temporary and permanent impacts during ground-disturbing activities.

Waters, including waters of the U.S., waters of the state, and state streambeds and lakes, that are considered jurisdictional, are described in Section 3.7.1.1, Key Definitions. Mitigation and compliance related to the CWA and Section 1600 of the CFGC are discussed in Section 3.7.7. The regulatory permitting process under the CWA and Section 1600 of the CFGC also triggers the need for compliance with the federal ESA, CESA, Section 402 of the CWA, MBTA, and Section 106 of the National Historic Preservation Act.

A number of jurisdictional waters were identified in the Wetland Study Area, including wetlands, other waters of the U.S., and waters of the state. Identified wetland features include seasonal wetlands, emergent wetlands, and vernal pools and swales. Other waters of the U.S. and waters of the state identified in the Wetland Study Area include canals/ditches, lacustrine, and seasonal riverine. Many of the jurisdictional waters in the Wetland Study Area have been leveled, drained, and/or leved to prevent flooding for agricultural purposes.

As determined through the CRAM evaluation and extrapolation of relative condition to all jurisdictional waters in the Wetland Study Area, more than 90% of the jurisdictional waters that would be affected by all project alternatives are in poor or fair condition. The prevalence of low-condition features, including canals/ditches, man-made lacustrine, and emergent wetlands, is largely because many features have been constructed or managed to support agricultural land use practices. The condition of these features is reduced because they are often surrounded by agricultural land or urban development, lack physical and biotic structural complexity, and exhibit a highly manipulated hydrologic regime.

Remnant “natural” features are generally in better condition than the manipulated or man-made features. Jurisdictional waters (e.g., wetlands) in excellent condition are only found on the BNSF through Allensworth Alternative, where natural landscapes are present but fragmented. A limited number of features were found to be in good condition. These features in good condition include seasonal riverine features, such as the Kings and Kern rivers, and vernal pool and swale features, such as those associated with the Allensworth area alternatives. Factors that improve the condition scores of these features include occurrence in a natural landscape setting, high topographic complexity, hydrologic connectivity, and the absence of hydrology modifiers (e.g., berms, groundwater pumping systems, and agricultural canals and ditches).

The physical and biological characteristics of the substrate within various features are largely dictated by whether the feature is manipulated or natural. Manipulated features include all jurisdictional water features except vernal pools and swales. These manipulated features contain substrates that have been altered through excavation, filling, dredging, and accretion of sediments; these substrates typically range from sandy and coarse-loamy, to fine-silty, fine-loamy, and fines (depending on location in the study area). Natural features such as vernal pools and swales have substrates composed of natural alkaline soils, which are harsh environments for microbes and plants, and contain low levels of organic matter. The Wetland Study Area is notably devoid of gravel or rock substrate.
• **Canals/Ditches:** Canals and drainage and irrigation ditches occur throughout the Wetland Study Area. These man-made linear features are concrete-lined, or unlined and earthen, and range from approximately 10 to 50 feet in width. These features are typically devoid of vegetation. Their purpose is to transport large quantities of water, typically for agricultural purposes. A series of pumps is often used to transport water between canals, ditches, or under roads and other infrastructure. In general canals/ditches are in relatively poor ecological condition due to poor landscape position, have a highly manipulated hydrological regime, offer few biological resources to plants and wildlife, and are physically engineered to the extent that they are devoid of natural characteristics.

• **Emergent Wetlands:** Emergent wetlands occur in two locations: (1) west of the town of Hanford and (2) in Bakersfield. They are characterized by topographic depressions that flood frequently or hold ponded water long enough to support hydrophytic vegetation and typically feature hydric soils. The presence of vegetation is what separates these features from lacustrine. Emergent wetlands present in the Wetland Study Area appear to be man-made or highly manipulated. They are bounded by earthen walls and receive hydrologic input from surrounding canals, agricultural fields, and urban development. The emergent wetland within the footprint of the Hanford West Bypass 1 and 2 alternatives occurs in a large depression surrounded by riparian vegetation. It appears to receive input from the adjacent canal and may be a remnant of a historic natural drainage system. This emergent wetland offers some habitat for wading birds and waterfowl. The emergent wetlands in the footprint of the Bakersfield alternatives are associated with lacustrine. They either comprise vegetated portions of basins or have replaced former basins that are now vegetated. In general, the emergent wetlands are in poor to fair ecological condition due to a poor landscape position, have a highly manipulated hydrologic regime, offer few biological resources to plants and wildlife, and are physically engineered to the extent that they retain few natural characteristics.

• **Lacustrine:** Lacustrine features include retention/detention basins and reservoirs. These features occur throughout the Wetland Study Area. Retention/detention basins are man-made features that are square, rectangular, round, or triangular in shape; often found with constructed earthen walls; and devoid of vegetation. These features are closely associated with agriculture activities, and in most instances are used as water storage (or retention) facilities. In urban areas, retention/detention basins are used to retain urban stormwater runoff. Surface water in the basins may be seasonal or perennial, depending on the location and use of the feature. Reservoirs are large, steep-sided, man-made impoundments that may contain either drinking water or irrigation water storage. These features are similar to, but generally larger than, retention/detention basins. All of the reservoirs are large, perennially open-water features devoid of vegetation; however, these features provide important habitat for wading birds and waterfowl. In general, lacustrine features are in relatively poor ecological condition due to a disturbed environmental setting; have a highly manipulated hydrological regime, offer few biological resources to plants and wildlife, and are physically engineered to the extent that they are devoid of natural characteristics.

• **Seasonal Riverine:** Seasonal riverine waterways occur as discrete features throughout the Wetland Study Area, and include Kings River Complex, Mussel Slough, Oak Slough, Cross Creek, Tule River, Deer Creek, Poso Creek, Kern River, and other unnamed waterways. Many of these features originate in the Sierra Nevada in relatively intact ecosystems. Although their hydrology is affected by water storage and hydroelectric development in the headwaters, the upper reaches of these streams are less affected by water developments than the reaches in the Wetland Study Area. By the time these features reach the Wetland Study Area, they are highly manipulated for municipal and agricultural purposes, and much of their surface water and groundwater has been diverted, pumped, or captured. Descriptions of the major waterways are provided in Section 3.8, Hydrology and Water Resources (see Section 3.8.4.2,

Banks and floodplains of many seasonal riverine waterways in the Wetland Study Area have been channelized, and extensive adjacent riparian vegetation has been removed or confined by surrounding land use. Typically these features are seasonally dry and have streambeds that are unvegetated and comprised of sandy or gravelly substrate. For these reasons, seasonal riverine features are in fair to good ecological condition due to landscape positions that have connectivity upstream and downstream. They function with altered and natural hydrological regimes, provide some biological resources to plants and wildlife, and are physically altered, which reduces their natural characteristics.

- **Seasonal Wetlands:** Seasonal wetlands occur in scattered locations throughout the Wetland Study Area, but are concentrated in the area between the towns of Corcoran and Wasco. The majority of the seasonal wetlands present in the Wetland Study Area were found within the BNSF right-of-way. They typically occur in disturbed habitats, including fallow agricultural areas, drainage ditches along the BNSF right-of-way, the margins of retention/detention basins, active agricultural fields, and roadside ditches. Seasonal wetlands are predominantly vegetated with hydrophytic plants, occur in topographic depressions, and have soils with sufficient clay content or compaction to support seasonal ponding. In manipulated areas, inundation is hydrologically controlled by pumps, weirs, and/or storm drain systems year-round. In more natural areas, inundation or saturation occurs during the winter and spring seasons as the result of rainfall and surface runoff. During the summer and fall months, seasonal wetlands are dry. Although they share a similar hydrologic regime, seasonal wetlands are distinguished from vernal pools by their lack of the distinctive floristic components and distinctive claypans or hardpans. In general, seasonal wetlands are in relatively fair ecological condition due to a poor landscape position, function with altered and natural hydrological regimes, provide some biological resources to plants and wildlife, and are physically altered, which reduces their natural characteristics.

- **Vernal Pools and Swales:** Vernal pools and swales occur in scattered locations throughout the Wetland Study Area, but are concentrated in the area between the towns of Corcoran and Wasco. They form as a result of the saline-sodic soils present in the Wetland Study Area. Vernal pools are shallow depressions with claypan or hardpan bottoms (fine-grained silts or clays) that retain water during the rainy season. These ponded pools support a community of hydrophytic plants endemic to vernal pools. Vernal swales are linear shallow depressions that receive hydrologic input from vernal pools. A network of pools and swales forms a vernal complex; such complexes are found in abundance in the vicinity of Allensworth.

Vernal pools and swales located immediately adjacent to the BNSF tracks were probably man-made, are likely affected by routine maintenance of the right-of-way, and are hydrologically altered. For these reasons, these features are generally in fair ecological condition. The remaining vernal aquatic resources provide a number of aquatic and biological functions and services. In general, these features are in good ecological condition because they are in natural landscapes away from developed land uses; function within a natural hydrological regime, though some features are affected by a number of hydrological barriers (e.g., BNSF right-of-way, SR 43); provide considerable biological resources to plants and wildlife; and have an unaltered, natural physical structure.

Jurisdictional waters are described in more detail in the Fresno to Bakersfield Section: Biological Resources and Wetlands Technical Report (Authority and FRA 2012a) and Section 3.8, Hydrology and Water Resources (see Section 3.8.4.2, Regional Hydrology and Water Quality), which provide detailed descriptions of the major surface water features found in the region.
Critical Habitat

Critical habitat, as defined by the federal ESA, includes designated areas that provide federally listed species with suitable habitat that includes the geographical locations and physical features essential to the conservation of a particular species. The federal ESA defines conservation as “all methods and procedures which are necessary to bring any endangered species or threatened species to the point at which the measures provided pursuant to this chapter [the federal ESA] are no longer necessary” (16 U.S.C. Section 1532[3]). The Fresno to Bakersfield HST project does not overlap any designated or proposed critical habitat units.

Designated critical habitat for the vernal pool fairy shrimp is present in the Habitat Study Area for the vernal pool tadpole shrimp, as shown on Figure 3.7-3c. In the vicinity of the town of Allensworth, the BNSF Alternative is within 250 feet of Critical Habitat Unit 27B and Critical Habitat Unit 27C. However, the Fresno to Bakersfield HST project is separated physically and hydraulically from Critical Habitat Unit 27C by the presence of the existing SR 43 and BNSF right-of-way, and is primarily separated from Critical Habitat Unit 27B by this existing infrastructure.

One of the potential compensatory mitigation sites, as described in Section 3.7.7.4, Compensatory Mitigation Options, is in designated critical habitat for the vernal pool tadpole shrimp, vernal pool fairy shrimp and California tiger salamander.

Where Critical Habitat Unit 27B crosses SR 43 and the BNSF right-of-way, it is composed of ruderal and annual grassland habitat that does not contain the Primary Constituent Elements for this species (i.e., vernal pools, swales, and other ephemeral wetlands and depressions). No direct or indirect impacts on vernal pool fairy shrimp critical habitat are anticipated as a result of the project; therefore, critical habitat for the vernal pool fairy shrimp is not discussed further in this document. Critical habitat is described in more detail in the Fresno to Bakersfield Section: Biological Resources and Wetlands Technical Report (Authority and FRA 2012a).

Essential Fish Habitat

No federally managed fish species covered by the Magnuson-Stevens Fisheries Conservation and Management Act have the potential to occur in the Habitat Study Area. Therefore, the Fresno to Bakersfield HST project does not overlap essential fish habitat, and essential fish habitat is not discussed further in this document.
Habitats of concern (critical habitat, public lands, conservation easements and banks)
Conservation Areas

Conservation areas include Recovery Plans for federally listed species, conservation easements, public lands, conservation banks, and HCPs.

Recovery Plans for Federally Listed Species

Two recovery plans address federally protected species with the potential to occur in the region: Recovery Plan for Vernal Pool Ecosystems for California and Southern Oregon (USFWS 2005) and Recovery Plan for Upland Species of the San Joaquin Valley, California (USFWS 1998). Table 3.7-5 presents the special-status species included in the recovery plans that have the potential to occur in the alternative alignments.

The study areas overlap core vernal pool areas identified by the Recovery Plan for Vernal Pool Ecosystems for California and Southern Oregon (USFWS 2005) near the Pixley NWR and Allensworth ER, as shown on Figure 3.7-3d, and satellite and linkage areas identified by the Recovery Plan for Upland Species of the San Joaquin Valley, California, as also shown on Figure 3.7-3d. However, the Fresno to Bakersfield HST project is separated physically and hydraulically by the presence of the existing SR 43, the BNSF right-of-way, and existing infrastructure from the core vernal pool areas of the Recovery Plan for Vernal Pool Ecosystems for California and Southern Oregon (USFWS 2005). No direct or indirect impacts on these core vernal pool areas are anticipated as a result of the project; therefore, the recovery areas identified in the Recovery Plan for Vernal Pool Ecosystems for California and Southern Oregon (USFWS 2005) are not discussed further in this document.

<table>
<thead>
<tr>
<th>Recovery Plan</th>
<th>Wildlife Species</th>
<th>Plant Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recovery Plan for Vernal Pool Ecosystems in California and Southern Oregon,</td>
<td>Vernal pool fairy shrimp, vernal pool tadpole shrimp, western spadefoot toad</td>
<td>Hoover’s spurge (Chamaesyce hooveri), San Joaquin Valley vernal pool</td>
</tr>
<tr>
<td>San Joaquin Valley Vernal Pool Regiona</td>
<td></td>
<td>smallscale (Atriplex persistens), Lost Hills crownscale (Atriplex coronata</td>
</tr>
<tr>
<td></td>
<td></td>
<td>var. vallicola), little mouse tail (Myosurus minimus ssp. apus), Orcutt</td>
</tr>
<tr>
<td></td>
<td></td>
<td>grass (Orcuttiana equalis), Green’s tuctoria (Tuctoria greener)</td>
</tr>
<tr>
<td>Recovery Plan for Upland Species of the San Joaquin Valley, Californiab</td>
<td>Blunt-nosed leopard lizard, Nelson’s (San Joaquin) antelope squirrel (Ammospermophilus sp.), Fresno kangaroo rat (Dipodomys nitratoides exilis), Tipton kangaroo rat, San Joaquin kit fox, Le Conte’s thrasher (Toxostoma le conte), Tulare grasshopper mouse (Onychomys torridus tularensis)</td>
<td>Bakersfield smallscale (Atriplex tulairensis), California jewelflower (Caulanthus californicus), Kern mallow (Eremalche kernensis), San Joaquin woolly threads (Lembertia congodonii), Bakersfield cactus (Opuntia basilaris var. treleasei), lesser saltscale (Atriplex minuscula), Hoover’s woolly-star (Eriastrum hooveri), spiny-sepaled button-celery (spiny sepal eryngo), Munz’s tidy-tips (Layia munzii), Comanche Point layia (Layia leucopappa), Panoche peppergrass (Lepidium Jaredii ssp. album)</td>
</tr>
</tbody>
</table>

a USFWS 2005.
b USFWS 1998.
Figure 3.7-3d

Habitats of concern (recovery plans and habitat conservation plans)
Conservation Easement

Tulare Lakebed Mitigation Site

The Tulare Lakebed Mitigation Site, a conservation easement in the vicinity of Cross Creek, is located near the study area (Figure 3.7-3c). The Tulare Lakebed Mitigation Site was placed into a conservation easement as mitigation for the Lake Kaweah Enlargement Project, and it provides habitat for shorebirds and other migrating waterfowl. The site was developed and is maintained by the Kaweah Delta Water Conservation District. The conservation area is approximately 1,300 acres (Figure 3.7-3c). The Fresno to Bakersfield HST alignment alternatives were designed to avoid the Tulare Lakebed Mitigation Site; therefore, the Tulare Lakebed Mitigation Site is not discussed further in this document.

Public Lands

Pixley National Wildlife Refuge

The Pixley NWR is located in Tulare County, just south of the Tule River (Figure 3.7-3c). The 10,320-acre refuge represents one of the few remaining examples of the grasslands, vernal pools, and playas that once bordered historic Tulare Lake. Over 100 bird and 6 reptile species use the refuge. Approximately 300 acres of managed wetlands provide habitat for migratory waterfowl and shorebirds. The primary management focus of the USFWS for the refuge is to maintain and restore native habitats, including wetlands and upland habitat (USFWS 2009b).

The Pixley NWR is near the HST alternatives (i.e., the BNSF Alternative is 195 feet west of Pixley NWR, and the Allensworth Bypass is 1,000 feet west of Pixley NWR); the Pixley NWR is separated from the HST alternatives by SR 43 and the BNSF railroad, and the HST alternatives do not overlap this NWR (Figure 3.7-3c). The construction of the HST alternatives would not result in direct impacts. Because of the considerable distance and the existing SR 43 and BNSF barriers, no indirect impacts are expected to occur to this NWR. For additional information about Pixley NWR, see Section 3.15, Parks, Recreation, and Open Space.

Allensworth Ecological Reserve

Allensworth ER is managed by the CDFW and is composed of a number of fragmented parcels in southern Tulare County and northern Kern County (Figure 3.7-3c). The approximate 5,056 acres in the Allensworth ER contain a number of biological resources, including special-status plant communities, wetlands, and special-status plant and wildlife species. The reserve is open to the public for wildlife viewing (CDFG 2010b). A portion of the Allensworth ER immediately west of the SR 43 is located in the footprint of the BNSF Alternative. For additional information about the Allensworth ER, see Section 3.15, Parks, Recreation, and Open Space.

Kern National Wildlife Refuge

The Kern NWR is located in Tulare County, west of Delano at the southern end of the San Joaquin Valley (Figure 3.7-3c). The 11,249-acre refuge contains seasonal wetlands, a riparian corridor, valley grasslands, alkali playa, and valley sink scrub habitats. Approximately 6,500 acres of managed wetlands provide habitat for wintering and migrating waterfowl and shorebirds. Upland areas (3,600 acres) are reserved as habitat for federally listed species such as the Tipton kangaroo rat, blunt-nosed leopard lizard, and San Joaquin kit fox. The primary management focus of the USFWS for the refuge is to maintain and restore native habitats, including wetlands and historic valley upland habitat (USFWS 2011). The Kern NWR is located 9.8 miles west of the HST alternatives (i.e., the Allensworth Bypass Alternative). The HST alternatives do not overlap this NWR (Figure 3.7-3c), and the construction of the HST alternatives would not result in direct...
or indirect impacts on this public land: therefore, the Kern NWR is not discussed further in this document.

Atwell Island Land Retirement Demonstration Project

The Atwell Island Land Retirement Demonstration Project (Atwell Island) lies between the Pixley NWR and Kern NWR. This 7,000-acre area is located in Kings and Tulare County, south of the town of Alpaugh, in the southeastern portion of what was once Tulare Lake. Atwell Island contains a number of biological resources, including special-status plant communities, wetlands, and special-status wildlife species. It is an agglomeration of land, water, and other property interests purchased from willing sellers by a federal interagency team. This area is currently managed by the Bureau of Land Management with the primary management goal of restoring native valley grasslands, wetlands, and alkali sink habitats on what was once marginal agricultural land. The project provides habitat corridor connections with the surrounding protected lands of the Pixley NWR, Kern NWR, Allensworth Ecological Reserve, and Sand Ridge (BLM 2011; USDOI 2010). Atwell Island is located west of SR 43 and is 2 miles west of the Allensworth Bypass Alternative; therefore, the HST alternatives do not overlap this area (Figure 3.7-3c). Because of the considerable distance, no direct or indirect impacts are expected to occur to Atwell Island; however, potential secondary impacts, including beneficial effects associated with implementation of offsite compensatory mitigation (e.g., the Smith Offering) in the immediate vicinity of the Atwell Island Restoration Project are discussed in Section 3.7.7.5. Landscape level impacts on wildlife movement and migration corridors in the region, including the SR 43/ SR 155 linkage and the Deer Creek-Sand Ridge linkage located in the vicinity of Atwell Island, are evaluated in Section 3.7.5.

Conservation Bank

Allensworth Conservation Bank

Conservation banks are large blocks of land that are preserved, restored, and enhanced for the purpose of mitigating for projects that take special-status species, wetlands, or other vegetated biological communities. One conservation bank, the Allensworth Conservation Bank, is located in the project vicinity; however, this bank is outside the study areas (see Figure 3.7-3c).

Habitat Conservation Plans

As stated earlier, a habitat conservation plan must accompany an Incidental Take Permit under Section 10 of the federal ESA. Three conservation plans have been identified in the project vicinity and are described below (see Figure 3.7-3d).

Metropolitan Bakersfield Habitat Conservation Plan (MBHCP): The MBHCP is a joint program of the City of Bakersfield and Kern County (Chapter 17.62 of the Kern County Ordinances) to assist urban development applicants in complying with federal and state endangered species regulations (City of Bakersfield and Kern County 1994). The program uses mitigation fees paid by applicants for grading or building permits to fund the purchase and maintenance of habitat land to compensate for the impact of urban development on endangered species habitat. Kern County and the City of Bakersfield have entered into a legal agreement with the CDFW and the USFWS detailing obligations under the MBHCP. The Incidental Take Permit associated with the MBHCP will expire in August 2014; however, an application for an extension has been submitted. Also, the City of Bakersfield plans to work with Kern County to develop a new habitat conservation plan and natural communities conservation plan for the MBHCP area.

The provisions of the MBHCP include mitigation ratios that must be met to ensure adequate mitigation for permitted land conversion activities. Adequate mitigation requires the greater of either a 1:1 ratio for open (non-urban) land conversion or a 3:1 ratio for natural land (a subset of...
open land that excludes agricultural lands) conversion. Also, the MBHCP identifies two Conceptual Focus Areas located in the northeastern and southwestern portions of the plan area that contain the majority of the natural land within the plan area and that are the most appropriate locations for preserves.

Pacific Gas and Electric Company San Joaquin Valley Operations and Maintenance Habitat Conservation Plan: The Pacific Gas & Electric Company San Joaquin Valley Operations and Maintenance Habitat Conservation Plan (Jones & Stokes 2006) was developed to allow the Pacific Gas and Electric Company to conduct operations and maintenance activities within the 12.1-million-acre plan area, while minimizing, avoiding, and compensating for possible direct, indirect, and cumulative adverse effects on threatened and endangered species. The plan outlines three mechanisms to limit impacts of the Pacific Gas and Electric Company's operations and maintenance activities: general avoidance and minimization measures, species surveys to trigger additional avoidance and minimization measures, and compensation for unavoidable impacts. However, this habitat conservation plan is an operations and maintenance plan that only applies to Pacific Gas and Electric facilities and, therefore, does not apply to this project and is not further discussed in this document.

First Public Draft—Kern County Valley Floor Habitat Conservation Plan (VFHCP): The draft VFHCP is a long-term program designed to conserve federally protected species, state-protected species, and/or other species of concern (Kern County Planning Department 2006). In the current draft, the VFHCP establishes the conditions under which Kern County; the California Division of Oil, Gas, and Geothermal Resources; and other program beneficiaries may seek authorization to allow the taking of multiple federally and state-protected species incidental to development and other land use activities. Once adopted, the VFHCP will be a voluntary program that provides an option for project proponents to comply with the federal ESA and CESA. Other options, such as complying with the federal ESA through Section 7 consultation or through consultation with the CDFW, are allowed.

The VFHCP has not been officially adopted and is currently in draft form. Therefore, the project is not required to avoid conflicts with the provisions of the plan, and the VFHCP is not discussed further in this document.

Protected Trees

Mapping of more than 1,500 trees in the Special-Status Plant Study Area was based on field surveys and GIS analysis of potential tree locations. A number of these trees are protected under the various local ordinances, regulations, and policies. Where possible, these trees have been categorized based on whether they are native and on local government policies, ordinances, and regulations. Many of the trees identified are landscape and ornamental trees that are located in the urban environment throughout the Special-Status Plant Study Area. Native trees observed (that are afforded protection) include valley oaks and Fremont cottonwoods. The *Fresno to Bakersfield Section: Biological Resources and Wetlands Technical Report* (Authority and FRA 2012a) contains more details regarding the methods, types, and locations of protected trees in the Special-Status Plant Study Area.

Although the tree counts must be considered approximate, they remain useful for a comparison of the alternatives under consideration.

3.7.4.6 Wildlife Movement Corridors

Habitat linkages are planning areas that, among other services, provide broad connections for wildlife movement between two or more habitat areas. The term “habitat linkage” is commonly used as a synonym for a wildlife movement corridor. However, wildlife movement corridors are physical connections that allow wildlife to move between patches of suitable habitat. Multiple
habitat linkages that could potentially function as wildlife movement corridors have been identified as part of recent state- and regional-level studies addressing connectivity and wildlife movement in California (Penrod et al. 2001; Penrod et al. 2003; ESRP 2009; USFWS 1998; Spencer et al. 2010). Collectively, these studies identify seven major linkage areas that intersect the HST alternatives (shown on Figure 3.7-4) and that could serve as movement corridors at the following general locations:

- Kings River linkage (connectivity choke-point linkage).
- St. John's River–Cross Creek linkage (landscape linkage).
- SR 43/SR 155 linkage (missing linkage).
- Tule River linkage (connectivity choke-point linkage).
- Deer Creek–Sand Ridge linkage (connectivity choke-point/missing linkage).
- Poso Creek linkage (missing linkage).
- Kern River linkage (connectivity choke-point linkage).

Each linkage was characterized as a connectivity choke-point, landscape, or missing linkage during the 2001 Missing Linkages conference. The conference involved a multidisciplinary team of agency personnel, conservation scientists, and university scientists. The goal of the conference was to designate the most important corridors in California and assign conservation priorities to each corridor based on biological value and current threats. A landscape linkage is an area not currently constricted and identified as essential for the functioning of an eco-region. A connectivity choke point is a narrow, affected, or otherwise tenuous habitat linkage connecting two or more habitat blocks. A missing linkage is a linkage that currently provides little to no connectivity (e.g., due to intervening development, roadways) but could provide connectivity in the future if enhanced or restored (Penrod et al. 2001). These seven linkages are described below. For a more detailed discussion of these linkages and opportunities for local wildlife movement, see the Fresno to Bakersfield Section: Biological Resources and Wetlands Technical Report (Authority and FRA 2012a).
Figure 3.7-4
Wildlife movement corridors
Kings River Linkage

The Kings River linkage is primarily an east-west linkage that follows the Kings River drainage (Penrod et al. 2001) and is approximately 60 miles long. This linkage may provide suitable habitat for a variety of special-status species. The Kings River riparian corridor linkage intersects the BNSF Alternative.

St. John's River–Cross Creek Linkage

The St. John's River–Cross Creek linkage is a north-south linkage that follows the Cross Creek riparian corridor (Penrod et al. 2001) and is approximately 36 miles long. The primary habitat types in this linkage were identified as valley oak, riparian forest, mixed riparian forest, grassland, and alkali sink. Conservation opportunities are good because the land is currently part of a formal conservation plan. The *Recovery Plan for Upland Species of the San Joaquin Valley, California* (USFWS 1998) and conservation partnership potentials are already in place between the CDFW, Corcoran Irrigation District, and the Endangered Species Recovery Program (Penrod et al. 2001). The Cross Creek riparian corridor linkage intersects the BNSF and Corcoran Bypass alternatives.

Tule River Linkage

The Tule River linkage is primarily an east-west linkage that follows the Tule River drainage (Penrod et al. 2001), and is approximately 25 miles long. This linkage connects to natural lands within the SR 43/SR 155 linkage and consists of patchy valley foothill riparian, grassland and vernal pool habitat over 25 miles throughout the eastern portion of the Central Valley, although it is confined to the riparian corridor where it intersects the BNSF Alternative. This linkage may provide suitable habitat for a variety of special-status species.

SR 43/SR 155 Linkage

The SR 43/SR 155 linkage is primarily a north-south linkage, which closely follows SR 43 and SR 155. This linkage connects, among other natural areas, the Kern NWR, the Pixley NWR, and other undisturbed tracts of land scattered throughout the San Joaquin Valley (Penrod et al. 2001). The SR 43/SR 155 linkage also connects the Pixley/Allensworth, Lost Hills, and Semitropic Ridge satellite areas, which are identified in the *Recovery Plan for Upland Species of the San Joaquin Valley, California* (USFWS 1998). The SR 43/SR 155 linkage is approximately 20 miles long. The primary habitat types in the linkage were identified as alkali sink scrub, valley grassland, and saltbush scrub. The major land cover types are agriculture and natural vegetation. The most significant barriers to wildlife movement are natural habitat gaps up to several miles long. Given that several thousand acres in this area need to be restored from agricultural land to natural communities for this linkage to function, the need for restoration in this area is extensive (Penrod et al. 2001).

Deer Creek–Sand Ridge Linkage

The Deer Creek–Sand Ridge linkage, which was identified in the vicinity of Allensworth, is a primarily east-west linkage that connects the Sequoia Foothills core area with the Kreyenhagan and Kettleman Hills core area identified in the *Recovery Plan for Upland Species of the San Joaquin Valley, California* (USFWS 1998). The Deer Creek–Sand Ridge linkage also intersects portions of the Pixley/Allensworth, Lost Hills, and Semitropic Ridge satellite areas identified in the *Recovery Plan for Upland Species of the San Joaquin Valley, California* (USFWS 1998) and two essential connectivity areas identified by the *California Essential Habitat Connectivity* project that connect the Pixley/Allensworth reserves with the Carrizo Plain/Kettleman Hills natural landscape blocks (Spencer et al. 2010). The Deer Creek–Sand Ridge linkage is approximately 25 miles long. The primary habitat types present in the linkage are riparian, grassland, vernal pool marshes,
and dunes. The Allensworth area linkage intersects the BNSF Alternative (near Allensworth) and the Allensworth Bypass Alternative.

Poso Creek Linkage

The Poso Creek linkage is primarily an east-west linkage that follows the Poso Creek riparian corridor, (Penrod et al. 2001) and is approximately 35 miles long. This linkage connects the northeast Bakersfield to the Kreyenhagan and Kettleman Hills populations of the San Joaquin kit fox, identified in the *Recovery Plan for Upland Species of the San Joaquin Valley, California* (USFWS 1998). The Poso Creek linkage was also identified in the Recovery Plan as a linkage connecting populations of San Joaquin kit fox between Bakersfield and the Pixley/Allensworth, Lost Hills, and Semitropic Ridge areas that run along Poso Creek (USFWS 1998). Major habitat types in the linkage were identified as riparian and upland habitat, and the major land cover type in and surrounding the linkage is agricultural. Major barriers to wildlife include gaps in habitat cover from 1 to 5 miles in length. The features that currently facilitate wildlife movement include underpasses as well as bridges over a major highway (SR 99). The Poso Creek linkage intersects the BNSF and Wasco-Shafter Bypass alternatives.

Kern River Linkage

The Kern River linkage is primarily an east-west linkage that follows the Kern River riparian corridor (Penrod et al. 2001) and is approximately 30 miles long. This linkage connects natural lands identified in the *Recovery Plan for Upland Species of the San Joaquin Valley, California* (USFWS 1998) that support special-status species (e.g., the Carrizo Plain National Monument) to Bakersfield and the Sierra Nevada foothills. Major habitat types in the linkage were identified as riparian and upland, and the major land-cover types were natural vegetation, agricultural land, and urban development. The most significant barriers to wildlife movement were identified as gaps in riparian habitat and water impoundments, which potentially restrict the movement of terrestrial species across areas that formerly had only intermittent water flow (Penrod et al. 2001). The linkage is currently part of the *Recovery Plan for Upland Species of the San Joaquin Valley, California* (USFWS 1998). The Kern River riparian corridor linkage intersects the BNSF, Bakersfield South, and Bakersfield Hybrid alternatives.

Pacific Flyway

In addition to the seven linkages described above, the Pacific Flyway intersects the project footprint and is a common route for bird migration that extends along the west coast of North and South America, from Alaska to Patagonia, and from pelagic areas of the Eastern Pacific to the Great Basin. This flyway spans most of California. Migratory birds travel along this route in spring and fall to reach breeding and overwintering grounds. Such birds may occur transiently in the project footprint or use areas of suitable habitat for breeding or overwintering.

Potential impacts of the project on migratory birds that use the Pacific Flyway, are described in Section 3.7.5.3, High-Speed Train Alternatives (see Construction Period Impacts – Common Biological Resource Impacts, Impact #2 – Construction Effects on Special-Status Wildlife Species), and Section 3.7.5.3, High-Speed Train Alternatives (see Project Impacts – Common Biological Resource Impacts, Impact #6 – Project Effects on Special-Status Wildlife Species).
3.7.5 Environmental Consequences

3.7.5.1 Overview

Under the No Project Alternative, existing development trends affecting biological resources are expected to continue and to further directly degrade some natural systems because development, such as new residential communities and transportation infrastructure, would convert undeveloped habitat to other uses. In addition, development would indirectly degrade remaining habitat through pollution, noise, and dust. Special-status species would be threatened with mortality from vehicle strikes, and development would result in increased loss, fragmentation, or impact on habitats of concern and wildlife movement corridors.

The HST alternative alignments (i.e., the BNSF, Hanford West Bypass 1, Hanford West Bypass 2, Corcoran Elevated, Corcoran Bypass, Allensworth Bypass, Wasco-Shafter Bypass, Bakersfield South, and Bakersfield Hybrid alternatives), HMF alternatives, and station alternatives would result in direct and indirect impacts on biological resources as a result of both construction period (temporary) impacts and project (permanent) impacts. The construction of HST alternatives would result in temporary direct or indirect impacts through the disturbance or removal of lands that have been determined to support or could potentially support special-status species, affect habitats of concern, or interfere with wildlife movement corridors. Project activities associated with the HST alternatives would result in permanent direct and indirect impacts on special-status species and habitats of concern, and would obstruct wildlife movement corridors.

A description of potential direct and indirect impacts is provided for each impact to biological resources. The nature of these impacts and their magnitude (i.e., the impact acreage) are used to determine the intensity of the impact under NEPA, and the significance of the impact under CEQA.

The overall effect determinations for the Hanford West Bypass 1, Hanford West Bypass 2, Corcoran Elevated, Corcoran Bypass, Allensworth Bypass, Wasco-Shafter Bypass, Bakersfield South, and Bakersfield Hybrid alternatives are generally similar to the corresponding segments of the BNSF Alternative. However, in one instance, the anticipated effects of the project on a particular resource are reduced by the use of the alternative when combined with the remaining segments of the BNSF Alternative. Specifically, the use of the Allensworth Bypass Alternative, as opposed to the corresponding segment of the BNSF Alternative, would reduce impacts and result in no effect on the Allensworth Ecological Reserve.

The determinations for the HMF alternatives and the station alternatives are independent of each other.

Construction of any of the HST alternative alignments, the HMF alternatives, and the station alternatives would require permitting under federal, state, and local regulatory processes, including the federal CWA (Sections 401, 402, and 404), California Fish and Game Code (Streambed Alteration Agreement/Section 1600), California ESA (2081 Incidental Take Permit), and the federal ESA (Section 7).

3.7.5.2 No Project Alternative

Under the No Project Alternative, existing trends affecting biological resources are expected to continue or worsen, including habitat loss from development, mortality from vehicle strikes, habitat degradation from pollution (e.g., polluted runoff from stormwater, inadvertent spills of hazardous materials), and noise and dust from development. Existing regulatory programs, such as the CWA and conservation programs (e.g., establishment of conservation easements and mitigation banks), would continue to abate the amount of habitat loss and degradation, if feasible. Effects that are expected to continue to occur are as follows:
Changes in crop production and rotation would continue to improve or degrade habitat conditions for species that forage or nest on farmland.

Transportation agencies would implement programmed and funded improvements to the intercity transportation system through 2035 (see Section 3.2, Transportation). In some cases, widening existing corridors or new improvements could result in additional impacts on biological resources. Each of these improvement projects would be subject to environmental impact analysis and evaluation of the impacts of habitat loss, habitat degradation, and “take” of special-status species. Impacts on biological resources and jurisdictional waters would be mitigated as part of those projects, including avoidance of “take” during construction, minimization of impacts during construction and operation, restoration of disturbed sites, and preservation of compensatory habitat.

Development pressure would continue in Fresno, Kings, Tulare, and Kern counties based on adopted general and specific plans (see Section 3.13, Station Planning, Land Use, and Development, and Section 3.18, Regional Growth). Low-density development on the urban fringe would likely continue and potentially result in the loss of habitat in these currently undeveloped areas, including high-value habitat such as wetlands and riparian areas. Current and future conservation easements on properties near urban boundaries would protect some areas. Impacts on biological resources and jurisdictional waters would be avoided, reduced, and in accordance with permit requirements for the development projects, be mitigated through the preservation of compensatory habitat and restoration of disturbed sites.

For example, some local projects that are in various stages of planning include the development of a 900-acre sand-and-gravel-extraction operation; the 220-acre expansion of the Sanger-Centerville aggregate mining operation; a regional shopping center; and an 889-acre residential, commercial, and recreational development in Bakersfield. These and similar projects will continue to have some impact on the wildlife, wetlands (including vernal pools), native vegetation, oak woodland, and nonnative grassland biological resources in local areas between Fresno and Bakersfield.

In addition, the historical trend of converting native plant communities to agricultural production has compromised the biological complexity of the region. With continued growth and development under the No Project Alternative, the loss of native plant communities will likely continue. Foreseeable projects that are planned, committed, or are otherwise part of a general plan or specific plan would continue the trend of converting open spaces with native plant communities to more urban uses.

3.7.5.3 High-Speed Train Alternatives

This section describes the potential effects on biological resources for the HST alternatives. Mitigation measures for effects and impacts on biological resources are listed in Section 3.7.7. Impacts associated with construction activities would result in temporary impacts; whereas track, structures, and facilities built for the project and its operation would result in permanent impacts on biological resources. Construction period impacts and project (permanent) impacts are defined in Section 3.1.

Impacts during the construction period of the HST alternatives are considered to be temporary; construction period impacts, such as the use of staging areas, would cease once construction is completed. Subsequent mitigation would restore the land to an appropriate previous state. However, due to the length of the construction period, it is unlikely that impacts on certain jurisdictional water features (vernal pools and swales) could be restored to preconstruction conditions; therefore, construction period impacts on these features are considered permanent and are quantified with project impacts. Project impacts, such as removal of special-status plant
communities and other land-cover types necessary for the HST right-of-way and associated facilities, are considered to be permanent. This section evaluates the direct and indirect impacts that would result from both construction and project activities of each HST alternative on biological resources. Biological resources are described below in four categories: (1) special-status plant species, (2) special-status wildlife species, (3) habitats of concern, and (4) wildlife movement corridors.

The construction period includes the purchasing of rights-of-way, construction and testing of the HSTs, and is anticipated to be completed within 7 years. Typically, heavy construction timelines (e.g., grading, excavating, constructing the HST railbed, and laying the track) would be accomplished within a 3- to 4-year period.

Construction Period Impacts - Common Biological Resource Impacts

Biological resources occurring adjacent to and within the construction footprint are expected to incur direct and indirect impacts from construction activities. Direct impacts on biological resources would result from construction activities within temporary impact areas of the construction footprint (i.e., staging areas, temporary access roads). Indirect impacts would occur within and adjacent to the construction footprint. The types of direct and indirect impacts would be common across all HST alternatives, and are discussed below for each resource.

Construction period impacts on natural lands could result in temporary direct and indirect effects on a number of biological resources, including special-status plant and wildlife species, habitats of concern (encompasses jurisdictional waters), and wildlife movement corridors (Table 3.7-6). Urban and agricultural lands affected by construction period activities are not expected to provide conditions that support special-status plant species or special-status plant communities, to provide preferred habitat for special-status wildlife species, to support high-quality jurisdictional waters, or to facilitate the movement or migration of wildlife species. However, these areas often contain degraded or marginal habitats for a number of special-status wildlife species; and in some instances, support jurisdictional waters (specifically retention and detention basins) and are used for movement and migration by a number of wildlife species. Direct, and in some instances indirect, impacts associated with urban, agricultural, and natural lands are described for the various biological resources. For a more complete description of the impacts on agricultural lands, see Section 3.14, Agricultural Lands.

The following sections discuss the effects of the HST alternatives on biological resources (i.e., on special-status plant species, special-status wildlife species, habitats of concern, and wildlife movement corridors). Although there are areas of temporary impact associated with the HMF alternatives and station alternatives, these impact areas overlap areas of permanent impact; therefore, impacts on these areas are considered permanent. Permanent direct and indirect impacts on biological resources associated with the HMF and station alternatives are discussed in the Project Impact section.
Table 3.7-6
Communities Potentially Affected by the Alternative Alignments (acres): Construction Period Impacts\(^{a,b}\) (Temporary Impacts)

<table>
<thead>
<tr>
<th>Community Type</th>
<th>BNSF Impact Acreage</th>
<th>Hanford West Bypass 1</th>
<th>Hanford West Bypass 1 Modified</th>
<th>Hanford West Bypass 2</th>
<th>Hanford West Bypass 2 Modified</th>
<th>Corcoran Elevated</th>
<th>Corcoran Bypass</th>
<th>Allensworth Bypass</th>
<th>Wasco-Shafter Bypass</th>
<th>Bakersfield South</th>
<th>Bakersfield Hybrid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barren</td>
<td>252.63</td>
<td>0.08 / -86.9</td>
<td>0.26 / -86.71</td>
<td>- / -86.98</td>
<td>- / -86.98</td>
<td>5.97 / +4.48</td>
<td>0.12 / -1.38</td>
<td>- / -1.07</td>
<td>- / -1.07</td>
<td>158.29 / -4.18</td>
<td>158.31 / -4.16</td>
</tr>
<tr>
<td>Urban</td>
<td>415.21</td>
<td>31.42 / ± 24.90</td>
<td>33.38 / -22.94</td>
<td>34.70 / -21.62</td>
<td>36.89 / -19.42</td>
<td>43.80 / ± 2.29</td>
<td>19.08 / ± 22.42</td>
<td>3.32 / -7.86</td>
<td>63.37 / ± 55.44</td>
<td>77.05 / +9.27</td>
<td>96.36 / +28.58</td>
</tr>
<tr>
<td>Agricultural Lands</td>
<td>1,458.41</td>
<td>108.52 / ± 332.78</td>
<td>104.29 / ± 337.01</td>
<td>109.48 / ± 331.82</td>
<td>175.20 / ± 266.1</td>
<td>328.06 / ± 7.34</td>
<td>345.44 / +24.72</td>
<td>150.07 / ± 11.08</td>
<td>324.22 / ± 201.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual Grassland</td>
<td>48.59</td>
<td>13.36 / +12.89</td>
<td>8.43 / +7.95</td>
<td>14.01 / ±13.54</td>
<td>5.76 / +5.28</td>
<td>2.62 / +1.18</td>
<td>1.28 / -0.16</td>
<td>3.84 / +1.18</td>
<td>4.53 / +3.45</td>
<td>33.25 / -3.28</td>
<td>36.25 / -0.28</td>
</tr>
<tr>
<td>Valley Foothill Riparian</td>
<td>0.81</td>
<td>0.91 / +0.59</td>
<td>0.99 / +0.66</td>
<td>0.99 / +0.66</td>
<td>0.08 / -0.04</td>
<td>0.29 / +0.17</td>
<td>0.02 / -0.24</td>
<td></td>
<td></td>
<td>0.30 / +0.21</td>
<td>0.30 / +0.21</td>
</tr>
<tr>
<td>Alkaline Desert Scrub</td>
<td>3.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.68 / +0.14</td>
<td>2.68 / +0.14</td>
</tr>
<tr>
<td>Pasture</td>
<td>5.69</td>
<td>0.34 / -5.20</td>
<td>0.13 / -5.42</td>
<td>0.34 / -5.20</td>
<td>0.11 / -5.44</td>
<td>0.15 / +0.15</td>
<td></td>
<td></td>
<td></td>
<td>0.09 / -0.02</td>
<td>0.09 / -0.02</td>
</tr>
<tr>
<td>Aquatic Communities</td>
<td>Fresh Emergent Wetland</td>
<td></td>
</tr>
<tr>
<td>Riverine(^f)</td>
<td>10.79</td>
<td>5.59 / +3.39</td>
<td>5.31 / +3.69</td>
<td>7.38 / +5.76</td>
<td>7.25 / +5.63</td>
<td>1.95 / -0.64</td>
<td>3.11 / 0.52</td>
<td>1.31 / +0.49</td>
<td>0.19 / 0.05</td>
<td>1.43 / +0.35</td>
<td>1.39 / +0.31</td>
</tr>
<tr>
<td>Lacustrine(^f)</td>
<td>18.92</td>
<td>0.03 / -6.82</td>
<td>1.78 / -5.06</td>
<td>- / -6.85</td>
<td>15.79 / +8.94</td>
<td>- / -0.45</td>
<td>0.06 / -0.39</td>
<td>1.60 / -3.8</td>
<td>1.68 / 1.34</td>
<td>1.00 / -1.2</td>
<td>0.97 / -1.25</td>
</tr>
</tbody>
</table>

Notes:

- All impacts were calculated based on 15% engineering design construction footprint.
- See Appendix 3.7-B, Attachments 1, 2, and 3 for more detailed comparisons. The “Difference Compared to Corresponding BNSF Area” represents the difference in impact acres between an alternative alignment and its corresponding segment in the BNSF Alternative: positive (+) differences indicate that the alternative alignment results in greater impact acres than its corresponding segment in the BNSF Alternative; negative (-) differences indicate that the alternative alignment results in fewer impact acres than its corresponding segment in the BNSF Alternative.
- — = No impact or not applicable
- Fresh Emergent Wetland is equivalent to the jurisdictional waters feature emergent wetland.
- Riverine includes two jurisdictional waters feature types: seasonal riverine and canals/ditches.
- Lacustrine is equivalent to the jurisdictional waters lacustrine.
Impact BIO#1 – Construction Effects on Special-Status Plant Species

Special-status plant species have the potential to occur across all HST alternatives. Appendix 3.7-A, Attachment 1, lists these species and discusses their potential for occurrence within the footprint of each HST alternative. The potential for occurrence is designated as no potential, low, moderate, or high, based on the presence of suitable habitat, the range of the species, and the proximity of known occurrences of the species. Where access was granted, focused special-status plant surveys were conducted. Where access was not granted, the determination of effects on special-status plants reflects a conservative approach: if suitable habitat was determined to be present, the special-status plant species associated with that habitat with potential to occur (Appendix 3.7-A, Attachment 1) were also assumed to be present.

Based on the field surveys, two special-status plant species are known to occur within the construction footprint and would be adversely affected by construction activities: heartscale (Atriplex cordulata) and little mouse tail (Myosurus minimus ssp. apus) (see Figure 3.7-5).

In addition to the species that have been observed within the Special-Status Plant Study Area, special-status plant species have the potential to occur in areas of suitable habitat in parcels that have not been surveyed. These species include federally and/or state-listed species and species listed by the CNPS, all of which are considered rare in California. If these species do occur in the construction footprint, they would be subject to the same adverse effects as those described below for species known to occur.

Direct BIO#1 Impacts during Construction Period

Direct impacts on special-status plant species and native plant species may occur as a result of construction crews removing vegetation within temporary impact areas, and from construction vehicles and personnel disturbing vegetation (i.e., trampling, covering, and crushing individual plants, populations, or suitable potential habitat for special-status plant species).

Indirect BIO#1 Impacts during Construction Period

Indirect impacts on special-status plant species and native plant species would potentially include erosion, siltation, and runoff into natural and constructed watercourses; soil and water contamination from construction equipment leaks; construction dust affecting plants by reducing their photosynthetic capability (especially during flowering periods); and an increased risk of fire (e.g., construction equipment use and smoking by construction workers) in adjacent open spaces. Dust generated during construction would not be expected to significantly contribute to violations of air quality standards for PM_{10} and PM_{2.5}, which are designed to protect the public welfare from harm to crops and vegetation. Although some special-status plants may still be affected by larger dust and soil particles that are not considered air pollutants, any such impacts on special-status plants would be minimized through implementation of the project design features (see Section 3.3.8, Project Design Features).

BNSF Alternative

Two species of special-status plant—heartscale and little mouse tail—have been identified within the BNSF Alternative. However, neither species was identified in the temporary impact area of the construction footprint. Special-status plant species could occur in unsurveyed, potentially suitable habitats within the temporary impact areas of the construction footprint of the BNSF Alternative. Attachment 1 in Appendix 3.7-B is a table that reports and compares, by alternative, the acres of impact on special-status plant species that would result from construction and project activities.
Special-status species (plants) within the Special-Status Plant Study Area

Figure 3.7-5
Construction of the BNSF Alternative would result in relatively high-intensity loss of special-status plant species and their habitats due to impacts on two known special-status species and considerable acreage of suitable habitat. Therefore, construction of the BNSF Alternative would result in an effect of substantial intensity under NEPA on special-status plant species and their habitats. The impact would be significant under CEQA.

Hanford West Bypass 1 and Hanford West Bypass 1 Modified Alternatives

No special-status plant species were identified in the temporary impact areas of the Hanford West Bypass 1 alternatives, but unsurveyed habitats that have low potential to support special-status plant species are present (Appendix 3.7-B, Attachment 1). Most of the land in the Hanford West Bypass 1 alternatives is agricultural (Table 3.7-6), including the unsurveyed habitats, which are small and have no to low potential of supporting special-status plant species (Appendix 3.7-A, Attachment 1). Neither the Hanford West Bypass 1 alternatives nor the corresponding segment of the BNSF Alternative would result in temporary impacts on observed special-status plant species. However, the Hanford West Bypass 1 alternatives would result in slightly more temporary impacts on unsurveyed habitats that have a low potential to support special-status plant species than the corresponding segment of the BNSF Alternative. If special-status plant species are present in these habitats, the construction period impacts of the Hanford West Bypass 1 alternatives would directly and indirectly result in temporary impacts on these species.

Because no special-status plant species were observed in the Hanford West Bypass 1 alternatives and the unsurveyed habitat present has a low potential to support special-status plant species, construction of either of the Hanford West Bypass 1 alternatives would result in a slight change from existing biological conditions and little or no regional effects. Therefore, the construction period impacts of the Hanford West Bypass 1 alternatives would result in an effect of negligible intensity under NEPA and a less than significant impact under CEQA on special-status plant species.

Hanford West Bypass 2 and Hanford West Bypass 2 Modified Alternatives

No special-status plant species were identified in the temporary impact areas of the Hanford West Bypass 2 alternatives, but unsurveyed habitats that have the potential to support special-status plant species are present (Appendix 3.7-B, Attachment 1). Most of the land in the Hanford West Bypass 2 alternatives is agricultural (Table 3.7-6), including the unsurveyed habitats, which are small and have no to low potential of supporting special-status plant species. Neither the Hanford West Bypass 2 alternatives nor the corresponding segment of the BNSF Alternative would result in temporary impacts on observed special-status plant species. However, the Hanford West Bypass 2 alternatives would result in more temporary impacts on unsurveyed habitats that have a low potential to support special-status plant species than the corresponding segment of the BNSF Alternative (Appendix 3.7-B, Attachment 1). If special-status plant species are present in these habitats, the construction period impacts of the Hanford West Bypass 2 alternatives would directly and indirectly result in temporary impacts on these species.

Because no special-status plant species were observed in the Hanford West Bypass 2 alternatives and the unsurveyed habitat present has a low potential to support special-status plant species, construction of either of the Hanford West Bypass 2 alternatives would result in a slight change from existing biological conditions and little or no regional effects. Therefore, the construction period impacts of the Hanford West Bypass 2 alternatives would result in an effect of negligible intensity under NEPA and a less than significant impact under CEQA on special-status plant species.
Corcoran Elevated Alternative

No special-status plant species were identified in the temporary impact areas of the Corcoran Elevated Alternative, but habitats that have the potential to support special-status plant species are present (Appendix 3.7-B, Attachment 1). These habitats are mainly in urban and agricultural lands (Table 3.7-6) that have no to low potential of supporting special-status plant species. Neither the Corcoran Elevated Alternative nor the corresponding segment of the BNSF Alternative would result in temporary impacts on special-status plant species; however, the Corcoran Elevated Alternative would result in a negligible increase in temporary impacts on habitats that have a low potential to support special-status plant species than its corresponding segment of the BNSF Alternative (Appendix 3.7-B, Attachment 1). If special-status plant species are present in these habitats, construction period impacts under the Corcoran Elevated Alternative could directly and indirectly result in temporary impacts on these species.

Because no special-status plant species were observed in the Corcoran Elevated Alternative and the unsurveyed habitat present has a low potential to support special-status plant species, construction of the Corcoran Elevated Alternative would result in a slight change from existing biological conditions and little or no regional effects. Therefore, the construction period impacts of the Corcoran Elevated Alternative would result in an effect of negligible intensity under NEPA and a less than significant impact under CEQA on special-status plant species.

Corcoran Bypass Alternative

No special-status plant species were identified in the temporary impact areas of the Corcoran Bypass Alternative, although unsurveyed habitats that have the potential to support special-status plant species are present (Appendix 3.7-B, Attachment 1). Neither the construction activities of the Corcoran Bypass Alternative nor those of the corresponding segment of the BNSF Alternative would result in temporary impacts on observed special-status plant species. The Corcoran Bypass would result in a minor increase in temporary impacts on unsurveyed habitats that have low potential to support special-status plant species compared to the corresponding segment of the BNSF Alternative (Appendix 3.7-B, Attachment 1). However, if special-status plant species are present in unsurveyed habitats, the construction period impacts of the Corcoran Bypass Alternative would directly and indirectly result in temporary impacts on these species.

Because no special-status plant species were observed in the Corcoran Bypass Alternative and the unsurveyed habitat present has a low potential to support special-status plant species, construction of the Corcoran Bypass Alternative would result in a slight change from existing biological conditions and little or no regional effects. Therefore, the construction period impacts of the Corcoran Bypass Alternative would result in an effect of negligible intensity under NEPA and a less than significant impact under CEQA on special-status plant species.

Allensworth Bypass Alternative

No special-status plant species were identified in the temporary impact areas of the Allensworth Bypass Alternative, although unsurveyed habitats that have the potential to support special-status plant species do occur (Appendix 3.7-B, Attachment 1). If special-status plant species are present in unsurveyed habitats, construction period impacts of the Allensworth Bypass Alternative would directly and indirectly result in temporary impacts on these species.

Neither the Allensworth Bypass Alternative nor the corresponding segment of the BNSF Alternative would result in temporary impacts on observed special-status plant species (Appendix 3.7-B, Attachment 1). The Allensworth Bypass Alternative would result in larger temporary direct impacts on unsurveyed habitats that have the potential to support special-status plant species than the corresponding BNSF Alternative.
Although no special-status plant species were observed in the temporary impact areas of the Allensworth Bypass Alternative, measurable adverse loss to special-status plant species may occur due to impacts on habitat with the potential to support special-status plant species. Therefore, construction period impacts of the Allensworth Bypass Alternative would result in an effect of moderate intensity under NEPA and a significant impact under CEQA on special-status plant species.

Wasco-Shafter Bypass Alternative

No special-status plant species were identified in the temporary impact areas of the Wasco-Shafter Bypass Alternative, although unsurveyed habitats that have low potential to support special-status plant species do occur (Appendix 3.7-B, Attachment 1). Suitable habitat for most special-status plant species is limited in the Wasco-Shafter Bypass Alternative (and in the corresponding segment of the BNSF Alternative) (Table 3.7-6) by a number of factors, including the conversion of natural lands to agricultural land uses. Suitable habitat is limited, and special-status plant species have a low potential of being present in suitable unsurveyed habitats. If special-status plant species are present in suitable unsurveyed habitats, construction period impacts under the Wasco-Shafter Bypass Alternative would directly and indirectly result in temporary impacts on these species.

The Wasco-Shafter Bypass Alternative would result in larger temporary impacts on unsurveyed habitats that have the potential to support special-status plant species than the corresponding BNSF Alternative (Appendix 3.7-B, Attachment 1). Because the habitats in both alternatives are disturbed, fragmented, and of low quality, the potential for special-status plant species to occur is low.

Although no special-status plant species were observed in the temporary impact areas of the Wasco-Shafter Bypass Alternative, measurable adverse loss to special-status plant species may occur due to impacts on habitat with the potential to support special-status plant species. Therefore, construction period impacts of the Wasco-Shafter Bypass Alternative would result in an effect of moderate intensity under NEPA and a significant impact under CEQA on special-status plant species.

Bakersfield South Alternative

No known occurrences of special-status plant species exist in the temporary impact areas of the Bakersfield South Alternative, although unsurveyed habitats that have the potential to support special-status plant species do occur (Appendix 3.7-B, Attachment 1). Although annual grassland is present in the Bakersfield South Alternative (and in its corresponding segment of the BNSF Alternative) (Table 3.7-6), suitable habitat for most special-status plant species is limited by a number of factors, including fragmentation and disturbance due to development (urbanization) that encompasses residential, commercial, and industrial purposes. Both the Bakersfield South Alternative and the corresponding BNSF Alternative segment are located in a highly urbanized portion of metropolitan Bakersfield. While suitable habitat is limited, special-status plant species have a moderate potential of being present in unsurveyed suitable habitats (Appendix 3.7-A, Attachment 1). If special-status plant species are present in suitable unsurveyed habitats, construction period impacts of the Bakersfield South Alternative would directly and indirectly result in temporary impacts on special-status plant species (Appendix 3.7-B, Attachment 1).

The Bakersfield South Alternative would result in slightly fewer temporary direct impacts on habitats that have the potential to support special-status plant species than would its corresponding segment of the BNSF Alternative (Appendix 3.7-B, Attachment 1).

Although no special-status plant species were observed in the Bakersfield South Alternative, relatively high-intensity loss to special-status plant species may occur due to impacts on large
amounts of unsurveyed habitats that have the potential to support special-status plant species. Therefore, construction period impacts of the Bakersfield South Alternative would result in an effect of substantial intensity under NEPA and a significant impact under CEQA on special-status plant species and their habitats.

Bakersfield Hybrid Alternative

No known occurrences of special-status plant species exist in the temporary impact areas of the Bakersfield Hybrid Alternative, although unsurveyed habitats that have the potential to support special-status plant species do occur (Appendix 3.7-B, Attachment 1). Although annual grassland is present in the Bakersfield Hybrid Alternative (and in its corresponding segment of the BNSF Alternative) (Table 3.7-6), suitable habitat for most special-status plant species is limited by a number of factors, including fragmentation and disturbance due to development (urbanization) that encompasses residential, commercial, and industrial purposes. Both the Bakersfield Hybrid Alternative and the corresponding BNSF Alternative segment are located in a highly urbanized portion of metropolitan Bakersfield. While suitable habitat is limited, special-status plant species have a moderate potential of being present in unsurveyed suitable habitats (Appendix 3.7-A, Attachment 1). If special-status plant species are present in suitable unsurveyed habitats, construction period impacts of the Bakersfield Hybrid Alternative would directly and indirectly result in temporary impacts on special-status plant species (Appendix 3.7-B, Attachment 1).

The Bakersfield Hybrid Alternative would result in slightly fewer temporary direct impacts on habitats that have the potential to support special-status plant species than would its corresponding segment of the BNSF Alternative (Appendix 3.7-B, Attachment 1).

Although no special-status plant species were observed in the Bakersfield Hybrid Alternative, relatively high-intensity loss to special-status plant species may occur due to impacts on large amounts of unsurveyed habitats that have the potential to support special-status plant species. Therefore, construction period impacts of the Bakersfield Hybrid Alternative would result in an effect of substantial intensity under NEPA and a significant impact under CEQA, on special-status plant species and their habitats.

Impact BI O#2 – Construction Effects on Special-Status Wildlife Species

Wildlife habitat and land cover types in the construction footprint have the potential to support a variety of special-status wildlife species. Construction activities have the potential to disturb the life cycles of these special-status species. The following section discusses impacts, direct and indirect, to special-status wildlife species and native fauna resulting from construction.

Fifty-four special-status wildlife species were determined to have a low, moderate, or high potential of occurring in at least one HST alternative. Appendix 3.7-A, Attachment 2 lists these species and discusses their potential for occurrence within the HST alternatives. The presence of and potential for special-status wildlife species to occur in a particular habitat is linked to the physical characteristics of the landscape. For instance, amphibians such as the California tiger salamander and western spadefoot toad require standing water to complete their life cycle. However, amphibious species may be linked to aquatic resources for a limited time during their breeding season and may spend significant amounts of time away from aquatic resources. No protocol surveys for special-status wildlife species were conducted. Determinations of the effects on special-status wildlife species assume that if suitable habitat was present, then the associated special-status wildlife species is also present. Observations of special-status wildlife species from 2010 and 2011 field surveys are shown on Figure 3.7-6.
Special-status species (wildlife) within the Habitat Study Area

Figure 3.7-6
Direct BIO#2 Impacts during Construction Period

Invertebrates: Vernal pool branchiopods (vernal pool tadpole shrimp and vernal pool fairy shrimp) or their cysts could be disturbed, injured, or killed if any construction activity occurs within seasonal wetlands, including vernal pools, when wet or dry. These impacts could also occur as a result of changes in the retention/infiltration of runoff, disturbance of the underlying hardpan soils of these habitats, and potential increase in siltation and turbidity from grading, vehicle traffic, contaminants, and other related ground-disturbing activities. Construction period impacts can alter the watershed of specific vernal pools, which, in turn, could alter seasonal inundation conditions. Valley elderberry longhorn beetles would be directly affected through the damage or removal of elderberry host plants. Removal of young elderberry shrubs would reduce the long-term habitat of the valley elderberry longhorn beetle by inhibiting recruitment of young elderberry shrubs into the canopy.

Amphibians: Direct impacts on amphibian species (including the California tiger salamander and western spadefoot toad) would include construction activities in suitable upland or aquatic habitat that could cause mortality, injury, or harassment of adults, eggs or egg masses, and larvae. Construction may also result in the temporary destruction, degradation, fill, or pollution of aquatic breeding or upland nesting habitats and the temporary loss of burrows or other upland refugia. Mortality, injury, or harassment may also occur if these species become trapped in open, excavated areas. Other potential direct impacts on aquatic habitat that change seasonal inundation patterns would be similar to those described for vernal pool branchiopods.

Reptiles: Direct impacts on reptiles (including western pond turtle, silvery legless lizard, San Joaquin whipsnake, and coast horned lizard) include construction activities in suitable habitat that could cause mortality, injury, or harassment of adults, eggs, or juveniles. Construction may also result in the temporary destruction, degradation, or pollution of habitat and the temporary loss of nesting areas, burrows, or other refugia. Mortality, injury, or harassment may also occur if these species become trapped in open, excavated areas. Due to its status as a California Fully Protected species, blunt-nosed leopard lizard may not be subjected to mortality, injury, or entrapment in excavated areas.

Fish: As a direct result of the construction of the HST project, one special-status fish species (i.e., Kern brook lamprey) may be disturbed, injured, or killed, or their waters disturbed, degraded, or polluted by sedimentation, construction equipment spills or leaks, and shading from overhead elevated structures. Direct impacts on the Kern brook lamprey may consist of physical disturbance, interruptions to fish passage, sedimentation, turbidity, altered water temperatures, oxygen depletion, and contaminants. Final bridge design plans are not currently available, but construction may require work below the ordinary high water mark. Dewatering during construction, if needed, may result in the stranding and mortality of special-status fish.

Birds (includes all migratory birds covered under MBTA): Thirty-two special-status bird species have been identified as having a low, moderate, or high potential of occurring in at least one HST alternative (Appendix 3.7-A, Attachment 2). Burrowing owls and other raptors extensively use agricultural lands, annual grasslands, valley foothill riparian (except burrowing owl), alkali desert scrub, irrigated hay field, and pasture land cover types. Construction activities (e.g., grubbing, grading, excavation, and driving off-road) could remove or disturb potential nesting habitat for special-status passerine birds; special-status wading birds; shorebirds; duck species; and migratory birds. Direct impacts may include bird mortality or injury. If construction occurs during the breeding season (February 1 to September 1), active nests could also be disturbed, potentially causing the loss of eggs or developing young (i.e., nest abandonment during the incubation, nesting or fledgling stages of these species).
• **Burrowing Owls**: Burrowing owls extensively use open landscapes with suitable artificial or natural burrows. Suitable habitat exists along most of the construction footprint. Vibration from construction equipment and increased vehicular traffic could collapse inhabited burrows.

• **Other Raptors**: Raptors may nest in riparian habitat, in roadside trees, in windbreaks, in oak woodlands, and on man-made towers. Several species were identified in the survey area, including Swainson's hawks. Construction disturbance within the February 1 to September 1 breeding season could result in the loss of fertile eggs or nestlings through nest abandonment. Direct impacts on raptors may also include the loss of breeding and foraging habitat.

Mammals: Construction activities described above also have the potential to affect special-status mammals, including special-status bats, the San Joaquin kit fox, American badger, and other special-status mammal species.

• **Western mastiff bat, western red bat, Townsend's big-eared bat, and pallid bat**: Increased lighting after sunset could disrupt foraging activities by special-status bat species, causing them to leave an area that has prolonged disturbance. Nocturnal insects are drawn by lighting, which in turn attracts foraging bats. Special-status bats that are attracted to lighted construction areas could have higher potential mortality through disorientation and impacts with construction equipment. Direct impacts on bats could include mortality of individuals during construction and temporary disturbances from noise, dust, and ultrasonic vibrations from construction equipment.

• **San Joaquin kit fox**: Impacts on San Joaquin kit foxes could occur since this species has the potential to actively use the construction footprint and adjacent areas. Mortality and injury of San Joaquin kit foxes could occur from the crushing of burrows by construction equipment and from vehicle strikes in work areas. Ground disturbance could lead to the temporary loss of foraging and denning habitat, which in turn could result in increased vulnerability of San Joaquin kit fox to predation and a reduction in prey availability. Temporary impacts on unhabituated San Joaquin kit fox could occur from noise, lighting, and vibration, which may disrupt normal breeding, feeding, or sheltering behaviors of San Joaquin kit fox individuals.

• **American badger**: Mortality and injury of American badgers could occur from the crushing of burrows by construction equipment and from vehicle strikes in construction work areas. Mortality, injury, or harassment may also occur if individuals of this species become trapped in open, excavated areas. Ground disturbance could lead to the temporary loss of foraging habitat. Temporary impacts on American badgers may occur from noise, lighting, and vibration.

• **Other special-status mammal species**: Direct impacts on other special-status mammal species (including Nelson's [San Joaquin] antelope squirrel, Fresno kangaroo rat, Tipton kangaroo rat, Dulzura pocket mouse, and Tulare grasshopper mouse) during construction would be the same as for the San Joaquin kit fox and American badger.

Native fauna: Direct impacts for native fauna (e.g., fish, mollusks, crustaceans, amphibians, birds, mammals, reptiles, and insects) are similar to those impacts described above for special-status wildlife species.

Indirect BIO#2 Impacts during Construction Period

Invertebrates: Indirect impacts could result from the disturbance and stockpiling of soils contributing to the transportation of sediment loads to adjacent habitats suitable for vernal pool branchiopods. Changes in the contour of the landscape or the disturbance of hardpan soils could cause changes in the hydrological cycles of seasonal wetlands, including vernal pools; could alter
the amount and quality of water available above and below ground; and could change the inflow of water to particular pools or decrease or increase inundation. These changes in hydrology could affect the reproductive success and survival of these species and their food. Chemical spills from construction equipment (e.g., fuel, transmission fluid, lubricating oil, and motor oil) could contaminate the water column, resulting in habitat degradation, reduced reproductive success of vernal pool branchiopods, or branchiopod mortality. Indirect impacts on vernal pool branchiopods may also include the shading of habitats by structures and the inadvertent introduction of nonnative invasive (noxious) weeds such as yellow star thistle (*Centaureum solstitialis*). For valley elderberry longhorn beetle, indirect impacts during construction could include the accumulation of fugitive dust on elderberry host plants, potentially weakening their vigor. In addition, changes to local runoff could have negative effects on the health and vigor of these plants.

Amphibians: Indirect construction period impacts for amphibians are similar to those for vernal pool branchiopods described above. In addition, potential indirect impacts could include abandonment of refugia (e.g., burrows), temporary shifts in foraging patterns or territories, changes in breeding habitat water quality or hydroperiod, and increased predation as a result of increased noise, light, and ground disturbance where suitable habitat is present.

Reptiles: Indirect impacts on reptiles may include the inadvertent introduction of invasive (noxious) weeds, such as yellow star thistle, which can reduce habitat suitability. Soil compaction and the placement of fill in suitable habitat may indirectly affect special-status reptiles by prohibiting burrowing, or by changing the frequency of vegetative cover. Construction activities may attract opportunistic predators (e.g., ravens, feral cats, raccoons) that may feed on special-status reptiles. Construction activities could result in temporary shifts in foraging patterns or territories, refugia abandonment, and increased predation as a result of increased noise, light, and infrastructure and ground vibrations where suitable habitat is present.

Fish: Indirect impacts on special-status fish may include changes in water quality, which could lead to temporary shifts in foraging patterns or territories. Ground disturbance associated with construction may increase erosion and sedimentation into nearby creeks, rivers, and other waters. Chemical spills from construction equipment (e.g., fuel, transmission fluid, lubricating oil, and motor oil) could contaminate the water column, resulting in habitat degradation or reduced reproductive success of special-status fish in downstream habitats.

Birds (includes all migratory birds covered under MBTA): Indirect impacts during the construction period may include the displacement of special-status bird species to avoid disturbance (e.g., noise, vibration, visual stimuli); such displacement could also result from the actual fragmentation of the landscape caused by the construction of the HST project components (e.g., security fences, elevated structures, railbeds, and associated facilities). These indirect impacts could interfere with the daily movement, foraging, and dispersal of these bird species. Repeated exposure to disturbance can reduce reproductive success and increase mortality through the exposure of nests to predators and the elements. Indirect impacts could result from repeated disturbance of breeding birds by construction vehicles traveling in work areas.

- **Burrowing Owls:** Indirect impacts could occur from the loss of habitat due to nonnative plant species, such as yellow star thistle, colonizing the area and from the disruption of breeding activity by repeated disturbance from construction vehicles traveling in work areas.

- **Raptors:** Indirect impacts during construction on raptors would be the same as the impacts for the avian species described above.
Mammals: Construction activities have the potential to indirectly affect special-status mammals, including special-status bats, San Joaquin kit fox, American badger, and other special-status mammal species.

- **Western mastiff bat, western red bat and pallid bat:** Ground-disturbing activities, such as excavation, vegetation removal, construction of the rail bed, placement of temporary structures and staging areas, and equipment operation, would result in noise, dust, or vibration disturbance. These disturbances could indirectly disrupt breeding or roosting activity, or result in the temporary loss of foraging habitats.

- **San Joaquin kit fox:** Temporary habitat conversion could result in shifts in foraging patterns or territories, increased predation, and decreased reproductive success. Indirect impacts could potentially include alteration of soils, such as compaction. Removal of burrowing prey species such as kangaroo rats may impact food availability for this species. The inadvertent introduction of invasive (noxious) weeds, such as yellow star thistle, could reduce habitat suitability for this species.

- **American badger:** Indirect impacts would be the same as those for the San Joaquin kit fox, as described above.

- **Other special-status mammal species:** Indirect impacts on other special-status mammal species (including Nelson's [San Joaquin] antelope squirrel, Fresno kangaroo rat, Tipton kangaroo rat, Dulzura pocket mouse, and Tulare grasshopper mouse) during construction would potentially include alteration of soils as a result of compaction. Compaction and the placement of fill would also alter vegetative cover, reducing habitat suitability. The inadvertent introduction of invasive (noxious) weeds, such as yellow star thistle, would reduce habitat value for these species.

Native fauna: Indirect impacts for native fauna (e.g., fish, mollusks, crustaceans, amphibians, birds, mammals, reptiles, and insects) are similar to the impacts described above for special-status wildlife species.

BNSF Alternative

Construction of the BNSF Alternative would result in impacts on a number of special-status wildlife species and on their habitat, as discussed above under direct and indirect impacts on special-status wildlife species. The quantification, based on acreage of potentially suitable habitat affected, of temporary impacts associated with construction period impacts is provided in Appendix 3.7-B, Attachment 2. The potential for the various special-status wildlife species to occur throughout and adjacent to the BNSF Alternative varies according to the species' known geographic range and the presence of suitable habitat capable of supporting the species' life history (Appendix 3.7-A, Attachment 2). Table 3.7-6 lists the amount of terrestrial and aquatic habitat (in acres) that could potentially be temporarily affected by the HST alternative alignments.

Invertebrates: Suitable habitat for special-status invertebrate species would be temporarily affected by construction of the BNSF Alternative (Appendix 3.7-B, Attachment 2). Seasonal wetlands and vernal pools may provide suitable habitat for vernal pool fairy shrimp and vernal pool tadpole shrimp. An elderberry shrub was identified within the footprint of the BNSF Alternative, and others may occur in unsurveyed areas in Fresno and Kings counties; primarily, along the Kings River, Cole Slough, and Dutch John Slough. Elderberry shrubs may provide suitable habitat for the valley elderberry longhorn beetle, which exclusively uses this shrub as its host plant. Due to the presence of suitable habitat, including sensitive wetland habitat, construction of the BNSF Alternative may result in the loss of special-status invertebrate species and their habitat. Therefore, construction of the BNSF Alternative would result in an effect of
moderate intensity on special-status invertebrate species and their habitat under NEPA, and a
significant impact under CEQA.

Fish: A single special-status fish species (i.e., Kern brook lamprey) may be present in a single
location within the BNSF Alternative, the Friant-Kern Canal in Bakersfield. A small amount of
marginal habitat (i.e., riverine) for the Kern brook lamprey is present in the Friant-Kern Canal. At
this location the BNSF Alternative would be constructed on an elevated structure. Construction of
the elevated structure could result in direct and indirect impacts on Kern brook lamprey in a
limited area (Appendix 3.7-B, Attachment 2). Kern brook lamprey has a low potential to be
temporarily affected, both directly and indirectly, by construction of this alternative. While other
streams within the BNSF Alternative may provide suitable habitat for Kern brook lamprey, these
streams are inaccessible either because of extensive water diversions and in-stream obstructions
to migratory movement or because they are outside the range of this species. Due to the limited
nature of potential impacts, construction of the BNSF Alternative would result in a slight change
from existing biological conditions and little to no regional effects on special-status fish species
and their habitat. Therefore, the construction impacts of the BNSF Alternative would result in an
effect of negligible intensity on special-status fish species and their habitat under NEPA and a less
than significant impact under CEQA.

Amphibians: Suitable habitat for western spadefoot toad would be temporarily affected by
construction of the BNSF Alternative (Appendix 3.7-B, Attachment 2). Potential suitable breeding
habitat consists of wetlands and riverine and adjacent upland habitat (e.g., annual grassland and
alkali desert scrub). Impacts on this species may occur throughout the BNSF Alternative where
suitable aquatic habitat is present.

Due to the presence of suitable habitat, including suitable aquatic habitat, construction of the
BNSF Alternative may result in measurable adverse loss of habitat that may support special-
status amphibian species. Therefore, construction period impacts of the BNSF Alternative would
result in an effect of moderate intensity on special-status amphibian species and their habitats
under NEPA and a significant impact under CEQA.

Reptiles: Suitable habitat for special-status reptiles would be temporarily affected by the
construction of the BNSF Alternative (Appendix 3.7-B, Attachment 2). Aquatic habitats—riverine
and lacustrine habitats as well as natural upland areas, such as alkali desert scrub and annual
grassland—are present. These habitats may support a range of special-status reptiles, including
the western pond turtle, blunt-nosed leopard lizard, silvery legless lizard, San Joaquin whipsnake,
and coast horned lizard. Due to the presence of large amounts of suitable natural habitats,
construction of the BNSF alternative may result in relatively high-intensity loss of habitat that
may support special-status reptile species. Therefore, the construction impacts of the BNSF
Alternative would result in an effect of substantial intensity on special-status reptile species and
their habitat under NEPA and a significant impact under CEQA.

Birds (including all migratory birds covered under MBTA): A number of habitats known to support
special-status birds and raptors would be temporarily affected by construction of the BNSF
Alternative (Appendix 3.7-B, Attachment 2). Aquatic habitats (e.g., riverine, lacustrine), annual
grassland, valley foothill riparian, and agricultural lands all may provide suitable habitat for a
variety of birds and raptors. Due to the presence of large amounts of suitable habitat,
construction of the BNSF Alternative may result in relatively high-intensity loss of habitat that
may support special-status bird species. Therefore, the construction impacts of the BNSF
Alternative would result in an effect of substantial intensity under NEPA and a significant impact
under CEQA on special-status bird and raptor species and their habitat.

Mammals: Suitable habitat for special-status mammals would be temporarily affected by
construction of the BNSF Alternative (Appendix 3.7-B, Attachment 2). Natural habitats, such as
alkali desert scrub and annual grassland, may support special-status mammals (e.g., American badger, San Joaquin kit fox, and Tipton kangaroo rat). Trees and rocky outcrops in natural habitats as well as trees and buildings in rural and urban areas may support special-status bats. Due to the presence of large amounts of suitable habitat, construction of the BNSF Alternative may result in relatively high-intensity loss of habitat that may support special-status mammal species. Therefore, the construction impacts of the BNSF Alternative would result in an effect of substantial intensity on special-status mammal species and their habitat under NEPA and a significant impact under CEQA.

Native fauna: Suitable habitat for native fauna would be temporarily affected by construction of the BNSF Alternative (Table 3.7-6). Suitable habitat for native fauna includes both developed and natural lands. Impacts on these habitats would result in measurable adverse loss to native fauna. Therefore, the construction impacts of the BNSF Alternative would result in an effect of moderate intensity under NEPA, and a significant impact under CEQA.

Hanford West Bypass 1 and Hanford West Bypass 1 Modified Alternatives

Construction of either of the Hanford West Bypass 1 alternatives would result in direct and indirect impacts on a number of special-status wildlife species and their habitat. These impacts would occur as discussed above under direct and indirect impacts on special-status wildlife species. The amount of temporary impacts associated with construction period impacts is provided in Appendix 3.7-B, Attachment 2. The potential for the various special-status wildlife species to occur throughout the Hanford West Bypass 1 alternatives varies according to the species known geographic range and the presence of suitable habitat capable of supporting the species life history (Appendix 3.7-A, Attachment 2). Table 3.7-6 lists the amount of terrestrial and aquatic habitat (in acres) that would potentially be temporarily affected by the HST alignment alternatives.

Both of the Hanford West Bypass 1 alternatives and the corresponding segment of the BNSF Alternative are in a rural setting dominated by agricultural land uses. Construction of either of the Hanford West Bypass 1 alternatives would affect slightly more natural habitats (e.g., annual grassland, valley foothill riparian) and much less agricultural and developed habitats than the corresponding segment of the BNSF Alternative (see Table 3.7-6; Appendix 3.7-B, Attachment 2).

Invertebrates: Construction of the Hanford West Bypass 1 alternatives would temporarily affect a small area of suitable habitat for vernal pool fairy shrimp and vernal pool tadpole shrimp. The potential suitable aquatic habitat is composed of three separate areas that are degraded and fragmented, and therefore this habitat has limited potential to support vernal pool fairy shrimp and vernal pool tadpole shrimp. Elderberry shrubs, the host plant of the valley elderberry longhorn beetle, have not been identified in the Hanford West Bypass 1 alternatives. This species could be temporarily affected if project activities occur in unsurveyed natural areas that contain elderberry shrubs. However, few natural areas suitable for elderberry shrubs (e.g., valley foothill riparian) are in the construction footprint of the Hanford West Bypass 1 alternatives (Table 3.7-6). This species has a low potential to occur in these alternatives.

Construction of either of the Hanford West Bypass 1 alternatives may result in the loss of habitat that has limited potential to support special-status invertebrates. This loss of habitat could lead to incremental and measurable loss of the species. Therefore, the construction period impacts of the Hanford West Bypass 1 alternatives would result in an effect of moderate intensity under NEPA and a less than significant impact under CEQA on special-status invertebrate species.

Fish: Special-status fish species are not expected to occur within the Hanford West Bypass 1 alternatives, as streams within these alternatives are inaccessible either because of extensive water diversions and in-stream obstructions to migratory movement or because they are outside
the range of special-status fish species. Therefore, no direct or indirect impacts on special-status fish would result from the construction of either of these alternatives. The construction period impacts of the Hanford West Bypass 1 alternatives would result in no effect under NEPA and no impact under CEQA on special-status fish species.

Amphibians: The Hanford West Bypass 1 alternatives contain a small amount of suitable habitat for the western spadefoot toad and the California tiger salamander. However, construction period impacts associated with this alternative would result in only small temporary impacts on natural habitats suitable for the western spadefoot toad, and in no temporary impacts on suitable habitat for the California tiger salamander (Appendix 3.7-B, Attachment 2). Portions of the Hanford West Bypass 1 alternatives in agricultural land uses provide little value or habitat for special-status amphibian species. Construction of the Hanford West Bypass 1 alternatives may result in the loss of habitat that has potential to support these species. Therefore, the construction period impacts of either of the Hanford West Bypass 1 alternatives would result in an effect of moderate intensity under NEPA and a significant impact under CEQA on special-status amphibian species.

Reptiles: The Hanford West Bypass 1 alternatives contain suitable habitat (e.g., riverine and annual grassland) for special-status reptile species (e.g., coast horned lizard and western pond turtle) (Appendix 3.7-A, Attachment 2). Portions of the Hanford West Bypass 1 alternatives in agricultural land uses likely provide little value for special-status reptile species. Special-status reptiles would be temporarily affected, both directly and indirectly, by construction of this alternative (Appendix 3.7-B, Attachment 2). Impacts on suitable habitat that may support special-status reptiles due to the construction of either of the Hanford West Bypass 1 alternatives may result in the loss of these species. Therefore, the construction period impacts of the Hanford West Bypass 1 alternatives would result in an effect of moderate intensity under NEPA and a significant impact under CEQA on special-status amphibian species.

Birds (includes all migratory birds covered under MBTA): The Hanford West Bypass 1 alternatives contain suitable habitat (including both natural habitats and agricultural land uses) for a variety of special-status birds (Appendix 3.7-A, Attachment 2). Impacts on these habitats due to the construction of either of the Hanford West Bypass 1 alternatives would result in the loss of habitat that may support special-status bird species. Therefore, construction period impacts of the Hanford West Bypass 1 alternatives would result in an effect of moderate intensity under NEPA and a significant impact under CEQA on special-status bird species.

Mammals: The Hanford West Bypass 1 alternatives contain both natural lands and agricultural lands that provide suitable habitat (e.g., annual grassland) for special-status mammal species (e.g., Tipton kangaroo rat and the San Joaquin kit fox). The agricultural land uses likely provide little value for breeding for special-status mammal species. However, these areas may be suitable for dispersal and foraging activities. Natural lands may provide opportunity for breeding, foraging, dispersal, and migration of the special-status mammal species. Special-status mammals would be temporarily affected, both directly and indirectly, by construction of this alternative (Appendix 3.7-B, Attachment 2). Impacts on suitable habitats due to the construction of either of the Hanford West Bypass 1 alternatives would result in measurable adverse loss to habitat that may support special-status mammal species. Therefore, the construction period impacts of the Hanford West Bypass 1 alternatives would result in an effect of moderate intensity under NEPA and a significant impact under CEQA on special-status mammal species.

Native fauna: Suitable habitat for native fauna would be temporarily affected by construction of either of the Hanford West Bypass 1 alternatives (Table 3.7-6). Suitable habitat for native fauna includes both developed and natural lands. Impacts on these habitats would result in measurable adverse loss to native fauna. Therefore, construction period impacts of the Hanford West Bypass 1 alternatives would result in an effect of moderate intensity under NEPA and a significant impact under CEQA on native fauna.
Hanford West Bypass 2 and Hanford West Bypass 2 Modified Alternatives

Construction of either of the Hanford West Bypass 2 alternatives would result in direct and indirect impacts on a number of special-status wildlife species and their habitat. These impacts would occur as discussed above under direct and indirect impacts on special-status wildlife species. The amount of temporary impacts associated with construction period impacts is provided in Appendix 3.7-B, Attachment 2. The potential for the various special-status wildlife species to occur throughout the Hanford West Bypass 2 alternatives varies according to the species known geographic range and the presence of suitable habitat capable of supporting the species life history (Appendix 3.7-A, Attachment 2). Table 3.7-6 lists the amount of terrestrial and aquatic habitat (in acres) that would potentially be temporarily affected by the HST alignment alternatives.

Both the Hanford West Bypass 2 alternatives and the corresponding segment of the BNSF Alternative are located in a rural setting dominated by agricultural land uses. The Hanford West Bypass 2 alternatives would result in fewer temporary direct impacts on agricultural and developed lands suitable for special-status wildlife species and in slightly more temporary direct impacts on natural habitats suitable for special-status wildlife species (Table 3.7-6; Appendix 3.7-B, Attachment 2).

Invertebrates: Construction of the Hanford West Bypass 2 alternatives would temporarily affect minimal suitable habitat for vernal pool fairy shrimp and vernal pool tadpole shrimp. The potential suitable aquatic habitat is composed of three separate areas that are degraded and fragmented, and therefore this habitat has limited potential to support vernal pool fairy shrimp and vernal pool tadpole shrimp. Elderberry shrubs, the host plant of the valley elderberry longhorn beetle, have not been identified. Elderberry shrubs, the sole host plant of the valley elderberry longhorn beetle, have not been identified in the Hanford West Bypass 2 alternatives. This species could be temporarily affected if project activities occur in unsurveyed natural areas that contain elderberry shrubs. However, few natural areas suitable for elderberry shrubs (e.g., valley foothill riparian) occur in the construction footprint of the Hanford West Bypass 2 alternatives (see Table 3.7-6). This species has a low potential to occur in these alternatives.

Construction of either of the Hanford West Bypass 2 alternatives may result in the loss of habitat that has limited potential to support special-status invertebrates. Therefore, the construction period impacts of the Hanford West Bypass 2 alternatives would result in an effect of moderate intensity under NEPA and a less than significant impact under CEQA on special-status invertebrate species.

Fish: Special-status fish species are not expected to occur within the Hanford West Bypass 2 alternatives, as streams within this alternative are inaccessible either because of extensive water diversions and in-stream obstructions to migratory movement or because they are outside the range of special-status fish species. Therefore, no direct or indirect impacts on special-status fish would result from the construction of these alternatives. Construction period impacts of the Hanford West Bypass 2 alternatives would result in no effect under NEPA and no impact under CEQA on special-status fish species.

Amphibians: The Hanford West Bypass 2 alternatives contain suitable habitat for the western spadefoot toad and California tiger salamander (Appendix 3.7-B, Attachment 2).

Potentially suitable aquatic and upland habitat for the California tiger salamander would be temporarily affected by construction of either of the Hanford West Bypass 2 alternatives. However, the extent of the impacts would be limited to the areas south of Cross Creek and north of Corcoran (Appendix 3.7-B, Attachment 2). No construction period impacts on suitable breeding habitat would occur with the Hanford West Bypass 2 Modified Alternative. The only aquatic
habitat associated with the Hanford West Bypass 2 Alternative is one large man-made reservoir, which provides manipulated inundation patterns that would likely limit suitability for breeding; also, a large berm surrounds the reservoir and may limit accessibility. Adjacent upland habitat has been recently developed and may limit the ability of the California tiger salamander to disperse or migrate to or occur within the construction footprint.

The construction period impacts associated with these alternatives would result in only minor temporary impacts on natural habitats suitable for the western spadefoot toad. Portions of the Hanford West Bypass 2 alternatives in agricultural land uses provide little value or habitat for special-status amphibian species. Construction of either of the Hanford West Bypass 2 alternatives may result in the loss of habitat that has the potential to support these species. Therefore, the construction period impacts of the Hanford West Bypass 2 alternatives would result in an effect of moderate intensity under NEPA and a significant impact under CEQA on special-status amphibian species.

Reptiles: The Hanford West Bypass 2 alternatives contain suitable habitat (e.g., riverine and annual grassland) for special-status reptile species (e.g., the coast horned lizard and western pond turtle) (Appendix 3.7-A, Attachment 2). Portions of the Hanford West Bypass 2 alternatives in agricultural land uses likely provide little value for special-status reptile species. Special-status reptiles would be temporarily affected, both directly and indirectly, by construction of this alternative (Appendix 3.7-B, Attachment 2). Impacts on suitable habitat for special-status reptiles due to the construction of either of the Hanford West Bypass 2 alternatives would result in the loss of habitat that may support these species. Therefore, the construction period impacts of the Hanford West Bypass 2 alternatives would result in an effect of moderate intensity under NEPA and a significant impact under CEQA on special-status reptile species.

Birds (includes all migratory birds covered under MBTA): The Hanford West Bypass 2 alternatives contain suitable habitat (including both natural habitats and agricultural land uses) for a variety of special-status birds (Appendix 3.7-A, Attachment 2). Impacts on these habitats due to the construction of either of the Hanford West Bypass 2 alternatives may result in the loss of habitats that may support special-status bird species. Therefore, the construction period impacts of either of the Hanford West Bypass 2 alternatives would result in an effect of moderate intensity under NEPA and a significant impact under CEQA on special-status bird species.

Mammals: The Hanford West Bypass 2 alternatives contain both natural lands and agricultural lands that provide suitable habitat (e.g., annual grassland) for special-status mammal species (e.g., the Tipton kangaroo rat and San Joaquin kit fox). The agricultural land uses likely provide little value for breeding for special-status mammal species. However, these areas may be suitable for dispersal and foraging activities. Natural lands may provide opportunities for breeding, foraging, dispersal, and migration of the special-status mammal species. Special-status mammals would be temporarily affected, both directly and indirectly, by construction of this alternative (Appendix 3.7-B, Attachment 2). Impacts on suitable habitats due to the construction of either of the Hanford West Bypass 2 alternatives would result in measurable adverse loss to special-status mammal species or their habitat. Therefore, the construction period impacts of the Hanford West Bypass 2 alternatives would result in an effect of moderate intensity under NEPA and a significant impact under CEQA on special-status mammal species.

Native fauna: Suitable habitat for native fauna would be temporarily affected by construction of the Hanford West Bypass 2 alternatives (Table 3.7-6). Suitable habitat for native fauna includes both developed and natural lands. Impacts on these habitats would result in measurable adverse loss to native fauna. Therefore, the construction period impacts of either of the Hanford West Bypass 2 alternatives would result in an effect of moderate intensity under NEPA and a significant impact under CEQA on native fauna.
Corcoran Elevated Alternative

Construction period activities associated with the Corcoran Elevated Alternative would result in direct and indirect project impacts on a number of special-status wildlife species and their habitat. These impacts would occur as discussed above under direct and indirect impacts on special-status wildlife species. The amount of temporary impacts associated with construction period impacts is provided in Appendix 3.7-B, Attachment 2. The potential for the various special-status wildlife species to occur throughout the Corcoran Elevated Alternative varies according to the species’ known geographic range, and the presence of suitable habitat capable of supporting the species’ life history (Appendix 3.7-A, Attachment 2). Table 3.7-6 lists the amount of terrestrial and aquatic habitat (in acres) that would potentially be temporarily affected by the HST alternative alignments.

Both the Corcoran Elevated Alternative and the corresponding BNSF Alternative segment are located in the urban areas of Corcoran. Both alternatives would affect small areas of habitat that could support special-status wildlife species; however, these habitats are mainly urban and agricultural lands (Table 3.7-6) which have a low to moderate potential of supporting these species (Appendix 3.7-A, Attachment 2). Construction period activities associated with the Corcoran Elevated Alternative would affect more urban and barren habitats than the corresponding segment of the BNSF Alternative. The magnitude of impacts on natural habitats of the Corcoran Elevated Alternative and the corresponding segment of the BNSF Alternative is similar (Table 3.7-6; Appendix 3.7-B, Attachment 2). However, indirect impacts on these species are substantially less from the Corcoran Elevated Alternative, compared with those of the corresponding BNSF Alternative segment, because the elevated structure will maintain habitat porosity across the alignment.

Invertebrates: Construction of the Corcoran Elevated Alternative would temporarily affect potentially suitable habitat for vernal pool fairy shrimp and vernal pool tadpole shrimp. However, the majority of the habitats within the Corcoran Elevated Alternative are developed, and the remaining natural habitats are degraded and fragmented and provide limited potential to support vernal pool fairy shrimp and vernal pool tadpole shrimp.

Elderberry shrubs, the sole host plant of the valley elderberry longhorn beetle, have not been identified in the Corcoran Elevated Alternative. This species could be temporarily affected if project activities occur in unsurveyed natural areas that contain elderberry shrubs. However, few natural areas are located in the Corcoran Elevated Alternative (Table 3.7-6). This species has a low potential to occur in this alternative.

The construction period impacts of the Corcoran Elevated Alternative may result in the loss of habitat that has limited potential to support special-status invertebrates. Therefore, the construction period impacts of the Corcoran Elevated Alternative would result in an effect of moderate intensity under NEPA and a less than significant impact under CEQA on special-status invertebrate species.

Fish: Special-status fish species are not expected to occur within the Corcoran Elevated Alternative, as streams within this alternative are inaccessible either because of extensive water diversions and in-stream obstructions to migratory movement, or because they are outside the range of special-status fish species. Therefore, no direct or indirect impacts on special-status fish would result from construction of this alternative. Construction period impacts of the Corcoran Elevated Alternative would result in no effect under NEPA, and no impact under CEQA on special-status fish species.

Amphibians: The Corcoran Elevated Alternative occurs mainly in urban and agricultural lands but does include only a small amount of suitable habitat (e.g., riverine) (Table 3.7-6) for western
spadefoot toad. Portions of the Corcoran Elevated Alternative in agricultural and urban land uses likely provide little value for western spadefoot toad and other special-status amphibian species. Western spadefoot toad has a low potential of being temporarily affected, both directly and indirectly, by construction of this alternative (Appendix 3.7-B, Attachment 2).

The Corcoran Elevated Alternative contains a small amount of suitable upland habitat for the California tiger salamander. However, the construction period impacts associated with this alternative would result in no temporary impacts on suitable habitat for the California tiger salamander (Appendix 3.7-B, Attachment 2). Due to the limited amount of suitable habitat present for special-status amphibians, and limited potential for the species to occur, the Corcoran Elevated Alternative would result in incremental changes from existing biological conditions. Therefore, the construction period impacts of the Corcoran Elevated Alternative would result in an effect of moderate intensity under NEPA and a less than significant impact under CEQA on special-status amphibian species.

Reptiles: The Corcoran Elevated Alternative occurs mainly in urban and agricultural lands and includes only a small amount of natural upland and aquatic habitat (Table 3.7-6) potentially suitable for special-status reptile species (e.g., coast horned lizard and western pond turtle) (Appendix 3.7-A, Attachment 2). Portions of the Corcoran Elevated Alternative in agricultural and urban land uses likely provide little value for special-status reptile species. Special-status reptiles have a low potential of being temporarily affected, both directly and indirectly, by construction of this alternative (Appendix 3.7-B, Attachment 2). Due to the limited amount of suitable habitat for special-status reptiles, construction of the Corcoran Elevated Alternative would result in a slight change from existing biological conditions and little to no regional effects. Therefore, construction period impacts of the Corcoran Elevated Alternative would result in an effect of negligible intensity under NEPA and a less than significant impact under CEQA on special-status reptile species.

Birds (includes all migratory birds covered under MBTA): The Corcoran Elevated Alternative contains suitable habitat (including both natural habitats and agricultural land uses) for a variety of special-status birds (Appendix 3.7-A, Attachment 2). Special-status birds would be temporarily affected, both directly and indirectly, by construction of this alternative (Appendix 3.7-B, Attachment 2). Impacts on these habitats due to the construction of the Corcoran Elevated Alternative would result in the loss of special-status bird species or their habitat. Therefore, construction period impacts of the Corcoran Elevated Alternative would result in an effect of moderate intensity under NEPA and in significant impact under CEQA on special-status bird species.

Mammals: The Corcoran Elevated Alternative contains both natural lands (e.g., annual grassland) and agricultural lands that provide suitable habitat for special-status mammal species (e.g., Tipton kangaroo rat and the San Joaquin kit fox). The agricultural land uses likely provide little value for breeding for special-status mammal species. However, these areas may be suitable for dispersal and foraging activities. Natural lands may provide opportunity for breeding, foraging, dispersal, and migration of the special-status mammal species. Special-status mammals would be temporarily affected, both directly and indirectly, by construction of this alternative (Appendix 3.7-B, Appendix 2). Impacts on suitable habitats due to the construction of the Corcoran Elevated Alternative would result in measurable adverse loss of habitats that may support special-status mammal species. Therefore, construction period impacts of the Corcoran Elevated Alternative would result in an effect of moderate intensity under NEPA, and in significant impact under CEQA on special-status mammal species.

Native fauna: Suitable habitat for native fauna would be temporarily affected by construction of the Corcoran Elevated Alternative (Table 3.7-6). Suitable habitat for native fauna includes both developed and natural lands. Impacts on these habitats would result in measurable adverse loss
to native fauna. Therefore, construction period impacts of the Corcoran Elevated Alternative would result in an effect of moderate intensity under NEPA and a significant impact under CEQA on native fauna.

Corcoran Bypass Alternative

Construction of the Corcoran Bypass Alternative would result in minor direct and indirect impacts on a number of special-status wildlife species and their habitat. These impacts would occur as discussed above under direct and indirect impacts on special-status wildlife species. The amount of temporary impacts associated with construction period impacts is provided in Appendix 3.7-B, Attachment 2. The potential for the various special-status wildlife species to occur throughout the Corcoran Bypass Alternative varies according to the species known geographic range and the presence of suitable habitat capable of supporting the species life history (Appendix 3.7-A, Attachment 2). Table 3.7-6 lists the amount of terrestrial and aquatic habitat (in acres) that would potentially be temporarily affected by the HST alignment alternatives.

The segment of the BNSF Alternative that corresponds to the Corcoran Bypass Alternative would run through the urban areas of Corcoran and, in some instances, through annual grasslands adjacent to SR 43 and the BNSF Railway right-of-way, while the Corcoran Bypass Alternative would affect annual grasslands that would provide higher habitat value for special-status species (Appendix 3.7-B, Attachment 2; Table 3.7-6). Construction period activities associated with the Corcoran Bypass Alternative would have slightly more impacts on natural, urban, and agricultural lands than the corresponding segment of the BNSF Alternative (see Table 3.7-6). The Corcoran Bypass Alternative would also create a new transportation alignment in these habitats, resulting in greater indirect impacts (i.e., habitat fragmentation) than would the BNSF Alternative, which follows existing transportation alignments. Both the Corcoran Bypass Alternative and the corresponding BNSF Alternative segment would run through areas in the vicinity of Cross Creek and the Tulare Lakebed Mitigation Site.

Invertebrates: Construction of the Corcoran Bypass Alternative would not temporarily affect suitable habitat (e.g., vernal pool or seasonal wetland) for vernal pool fairy shrimp and vernal pool tadpole shrimp. However, the majority of the habitats within the Corcoran Elevated Alternative are developed, and the remaining natural habitats are degraded and fragmented and provide limited potential to host vernal pool fairy shrimp and vernal pool tadpole shrimp.

Construction of the Corcoran Bypass Alternative would temporarily affect a small area of suitable habitat (e.g., valley foothill riparian [elderberry shrubs]) for the valley elderberry longhorn beetle. Due to the limited amount of suitable habitat present for special-status invertebrates, construction of the Corcoran Bypass Alternative would result in a slight change from existing biological conditions and little to no regional effects. Therefore, construction period impacts of the Corcoran Bypass Alternative would result in an effect of negligible intensity under NEPA, and a less than significant impact under CEQA on special-status invertebrate species.

Fish: Special-status fish species are not expected to occur within the Corcoran Bypass Alternative, as streams within this alternative are inaccessible either because of extensive water diversions and in-stream obstructions to migratory movement or because they are outside the range of special-status fish species. Therefore, no direct or indirect impacts on special-status fish would result from construction of this alternative. Construction period impacts of the Corcoran Bypass Alternative would result in no effect under NEPA, and no impact under CEQA on special-status fish species.

Amphibians: The Corcoran Bypass Alternative includes suitable habitat for the western spadefoot toad and California tiger salamander. However, construction period impacts associated with this alternative would result in only minor temporary impacts on natural habitats suitable for the
western spadefoot toad, and in no temporary impacts on suitable habitat for the California tiger salamander (Appendix 3.7-A, Attachment 2). Due to the limited amount of suitable habitat present and the limited potential for the special-status amphibian species to occur, the Corcoran Bypass Alternative would only result in incremental changes from existing biological conditions.

Therefore, the construction period impacts of the Corcoran Bypass Alternative would result in an effect of moderate intensity under NEPA and a less than significant impact under CEQA on special-status amphibian species.

Reptiles: The Corcoran Bypass Alternative contains suitable habitat (e.g., riverine and annual grassland) for special-status reptile species (e.g., coast horned lizard and western pond turtle) (Appendix 3.7-A, Attachment 2). However, construction period impacts associated with this alternative would result in only minor temporary impacts on natural habitats and agricultural lands suitable for special-status reptile species. Due to the limited amount of suitable habitat present for special-status reptiles, construction of the Corcoran Bypass Alternative would result in a slight change from existing biological conditions and little to no regional effects. Therefore, construction period impacts of the Corcoran Bypass Alternative would result in an effect of negligible intensity under NEPA and a less than significant impact under CEQA on special-status reptile species.

Birds (includes all migratory birds covered under MBTA): The Corcoran Bypass Alternative contains suitable habitat (including both natural habitats and agricultural land uses) for a variety of special-status birds (Appendix 3.7-A, Attachment 2). Due to the amount of suitable natural habitat present and the limited potential for the species to occur and carry out its life history in agricultural areas, the construction of the Corcoran Bypass Alternative may result in the incremental loss of special-status bird species and their habitats. Therefore, the construction period impacts of the Corcoran Bypass Alternative would result in an effect of moderate intensity under NEPA and a less than significant impact under CEQA on special-status bird species.

Mammals: The Corcoran Bypass Alternative contains both natural lands and agricultures lands that provide suitable habitat (e.g., annual grassland) for special-status mammal species (e.g., Tipton kangaroo rat and the San Joaquin kit fox). Due to the small amount of suitable natural habitat present and the limited potential for the species to occur in agricultural land uses, the construction of the Corcoran Bypass Alternative may result in the incremental loss of special-status mammal species and their habitats. Therefore, the construction period impacts of the Corcoran Bypass Alternative would result in an effect of moderate intensity under NEPA and a less than significant impact under CEQA on special-status mammal species.

Native fauna: Suitable habitat for native fauna would be temporarily affected by construction of the Corcoran Bypass Alternative (Table 3.7-6). Suitable habitat for native fauna includes both developed and natural lands. Impacts on these habitats would result in measurable adverse loss to native fauna. Therefore, construction period impacts of the Corcoran Bypass Alternative would result in an effect of moderate intensity under NEPA and a significant impact under CEQA on native fauna.

Allensworth Bypass Alternative

Construction of the Allensworth Bypass Alternative would result in direct and indirect impacts on a number of special-status wildlife species and their habitat. These impacts would occur as discussed above under direct and indirect impacts on special-status wildlife species. The amount of temporary impacts associated with construction period impacts is provided in Appendix 3.7-B, Attachment 2. The potential for the various special-status wildlife species to occur throughout the Allensworth Bypass Alternative varies according to the species known geographic range and the presence of suitable habitat capable of supporting the species’ life history (Appendix 3.7-A,
Attachment 2). Table 3.7-6 lists the amount of terrestrial and aquatic habitat (in acres) that would potentially be temporarily affected by the HST alternative alignments.

Construction of the Allensworth Bypass Alternative would affect slightly more agricultural lands suitable for special-status wildlife species than the corresponding segment of the BNSF Alternative. During the construction period, the magnitude of impacts on natural habitats of the Allensworth Bypass Alternative and the corresponding segment of the BNSF Alternative segment is similar (Table 3.7-6).

Invertebrates: Construction of the Allensworth Bypass Alternative would have a very small (<0.10 acres) temporary effect on suitable habitat (e.g., vernal pool or seasonal wetland) for vernal pool fairy shrimp and vernal pool tadpole shrimp. Construction of the Allensworth Bypass Alternative would temporarily affect a small amount of suitable habitat (e.g., valley foothill riparian [elderberry shrubs]) for the valley elderberry longhorn beetle. Due to the limited amount of suitable habitat present for special-status invertebrates, construction of the Allensworth Bypass Alternative would result in a slight change from existing biological conditions and little to no regional effects. Therefore, the construction period impacts of the Allensworth Bypass Alternative would result in an effect of negligible intensity under NEPA and a less than significant impact under CEQA on special-status invertebrate species.

Fish: Special-status fish species are not expected to occur within Allensworth Bypass Alternative, as streams within this alternative are inaccessible either because of extensive water diversions and in-stream obstructions to migratory movement, or because they are outside the range of special-status fish species. Therefore, no temporary direct or indirect impacts on special-status fish would result from construction of this alternative (Appendix 3.7-B, Attachment 2). Construction period impacts of the Allensworth Bypass Alternative would result in no effect under NEPA, and no impact under CEQA on special-status fish species.

Amphibians: The Allensworth Bypass Alternative contains a small amount of suitable upland and aquatic habitat for the western spadefoot toad. Construction period impacts associated with this alternative would result in only minor temporary impacts on natural habitats suitable for this species (Appendix 3.7-B, Attachment 2). Due to the limited amount of suitable habitat present for special-status amphibians, the construction of the Allensworth Bypass Alternative would result in a slight change from existing biological conditions and have little to no regional effects. Therefore, the construction period impacts of the Allensworth Bypass Alternative would result in an effect of negligible intensity under NEPA and in a less than significant impact under CEQA on this special-status amphibian species.

Reptiles: The Allensworth Bypass Alternative contains a small amount suitable habitat for special-status reptile species. Construction period impacts associated with this alternative would result in temporary impacts on habitats suitable for these species (Appendix 3.7-B, Attachment 2). Impacts on these habitats due to the construction of the Allensworth Bypass Alternative would result in the loss of habitat that may support special-status reptiles. Therefore, construction period impacts of the Allensworth Bypass Alternative would result in an effect of moderate intensity under NEPA and a significant impact under CEQA on special-status reptile species.

Birds (includes all migratory birds covered under MBTA): The Allensworth Bypass Alternative contains suitable habitat (e.g., agricultural land uses) for migratory birds and special-status birds (Appendix 3.7-A, Attachment 2). Special-status birds would be temporarily affected, both directly and indirectly, by construction of this alternative (Appendix 3.7-B, Attachment 2). Impacts on these habitats due to the construction of the Allensworth Bypass Alternative would result in the loss of habitat that may support special-status bird species. Therefore, construction period impacts of the Allensworth Bypass Alternative would result in an effect of moderate intensity under NEPA, and in significant impact under CEQA on special-status bird species.
Mammals: The Allensworth Bypass Alternative contains suitable habitat (e.g., agricultural land uses) for special-status mammals, including the San Joaquin kit fox, American badger, and Tipton kangaroo rat. The agricultural land uses likely provide little value for breeding for special-status mammal species. However, these areas may be suitable for dispersal and foraging activities. Special-status mammals would be temporarily affected, both directly and indirectly, by construction of this alternative (Appendix 3.7-B, Attachment 2). Impacts on suitable habitats due to the construction of the Allensworth Bypass Alternative would result in the loss of special-status mammal species or their habitat. Therefore, construction period impacts of the Allensworth Bypass Alternative would result in an effect of moderate intensity under NEPA and a significant impact under CEQA on special-status mammal species.

Native fauna: Suitable habitat for native fauna would be temporarily affected by construction of the Allensworth Bypass Alternative (Table 3.7-6). Suitable habitat for native fauna includes both developed and natural lands. Impacts on these habitats would result in measurable adverse loss to native fauna. Therefore, construction period impacts of the Allensworth Bypass Alternative would result in an effect of moderate intensity under NEPA and a significant impact under CEQA on native fauna.

Wasco-Shafter Bypass Alternative

Construction of the Wasco-Shafter Bypass Alternative would result in direct and indirect impacts on a number of special-status wildlife species and their habitat. These impacts would occur as discussed above under direct and indirect impacts on special-status wildlife species. The amount of temporary impacts associated with construction period impacts is provided in Appendix 3.7-B, Attachment 2. The potential for the various special-status wildlife species to occur throughout the Wasco-Shafter Bypass Alternative varies according to the species' known geographic range, and the presence of suitable habitat capable of supporting the species' life history (Appendix 3.7-A, Attachment 2). Table 3.7-6 lists the amount of terrestrial and aquatic habitat (in acres) that would potentially be temporarily affected by the HST alternative alignments.

Construction of the Wasco-Shafter Bypass Alternative would affect fewer agricultural lands and urban areas suitable for special-status wildlife species than the corresponding segment of the BNSF Alternative. Construction activities would affect a similar number of or slightly fewer natural habitats suitable for special-status wildlife species than the corresponding segment of the BNSF Alternative (Table 3.7-6; Appendix 3.7-B, Attachment 2).

Invertebrates: The Wasco-Shafter Bypass Alternative does not contain suitable habitat (e.g., vernal pools) for vernal pool fairy shrimp and vernal pool tadpole shrimp, and therefore there would be no temporary effects on suitable habitat for these species. Construction of the Wasco-Shafter Bypass Alternative would not temporarily affect suitable habitat (e.g., valley foothill riparian [elderberry shrubs]) for the valley elderberry longhorn beetle. Construction period impacts of the Wasco-Shafter Bypass Alternative would result in no effect under NEPA, and in no impact under CEQA on special-status invertebrate species.

Fish: Special-status fish species are not expected to occur within the Wasco-Shafter Bypass Alternative, as streams within this alternative are inaccessible either because of extensive water diversions and in-stream obstructions to migratory movement or because they are outside the range of special-status fish species. Therefore, no direct or indirect impacts on special-status fish would result from construction of this alternative. Construction period impacts of the Wasco-Shafter Bypass Alternative would result in no effect under NEPA, and no impact under CEQA on special-status fish species.

Amphibians: The Wasco-Shafter Bypass Alternative contains a small amount of suitable upland habitat for the western spadefoot toad. Construction period impacts associated with this
alternative would result in only minor temporary impacts on natural habitats suitable for this species (Appendix 3.7-B, Attachment 2). Due to the limited amount of suitable habitat present for special-status amphibians, construction of the Wasco-Shafter Bypass Alternative would result in a slight change from existing biological conditions and little or no regional effects. Therefore, construction period impacts of the Wasco-Shafter Bypass Alternative would result in an effect of negligible intensity under NEPA and a less than significant impact under CEQA on this special-status amphibian species.

Reptiles: The Wasco-Shafter Bypass Alternative contains a small amount of suitable habitat for special-status reptile species. Construction period impacts associated with this alternative would result in only minor temporary impacts on habitats suitable for these species (Appendix 3.7-B, Attachment 2). Due to the limited amount of suitable habitat present for special-status reptiles, the construction of the Wasco-Shafter Bypass Alternative would result in a slight change from existing biological conditions and have little or no regional effects. Therefore, the construction period impacts of the Wasco-Shafter Bypass Alternative would result in an effect of negligible intensity under NEPA and in a less than significant impact under CEQA on special-status reptile species.

Birds (includes all migratory birds covered under MBTA): The Wasco-Shafter Bypass Alternative contains suitable habitat (e.g., agricultural land uses) for special-status birds along much of its length. Special-status birds would be temporarily affected, both directly and indirectly, by construction of this alternative (Appendix 3.7-B, Attachment 2). Impacts on suitable habitats due to the construction of the Wasco-Shafter Bypass Alternative would result in a relatively high-intensity loss of habitat that may support special-status bird species. Therefore, the construction period impacts of the Wasco-Shafter Bypass Alternative would result in an effect of substantial intensity under NEPA and a significant impact under CEQA on special-status bird species.

Mammals: The Wasco-Shafter Bypass Alternative contains suitable habitat (e.g., agricultural land uses) for special-status mammals (Appendix 3.7-A, Attachment 2). The agricultural land uses likely provide little value for breeding for special-status mammal species. However, these areas may be suitable for dispersal and foraging activities. Special-status mammals would be temporarily affected, both directly and indirectly, by construction of this alternative (Appendix 3.7-B, Attachment 2). Impacts on suitable habitats due to the construction of the Wasco-Shafter Bypass Alternative would result in a relatively high-intensity loss of habitat that has limited potential to support special-status mammal species. Therefore, the construction period impacts of the Wasco-Shafter Bypass Alternative would result in an effect of substantial intensity under NEPA and a significant impact under CEQA on special-status mammal species.

Native fauna: Suitable habitat for native fauna would be temporarily affected by construction of the Wasco-Shafter Bypass Alternative (Table 3.7-6). Suitable habitat for native fauna includes both developed and natural lands. Impacts on these habitats would result in measurable adverse loss to native fauna. Therefore, construction period impacts of the Wasco-Shafter Bypass Alternative would result in an effect of moderate intensity under NEPA and a significant impact under CEQA on native fauna.

Bakersfield South Alternative

Construction of the Bakersfield South Alternative would result in direct and indirect impacts on a number of special-status wildlife species and their habitat. These impacts would occur as discussed above under direct and indirect impacts on special-status wildlife species. The amount of temporary impacts associated with construction period impacts is provided in Appendix 3.7-B, Attachment 2. The potential for the various special-status wildlife species to occur throughout Bakersfield South Alternative varies according to the species’ known geographic range, and the presence of suitable habitat capable of supporting the species’ life history (Appendix 3.7-A,
Attachment 2). Table 3.7-6 lists the amount of terrestrial and aquatic habitat (in acres) that would potentially be temporarily affected by the HST alternative alignments.

Both the Bakersfield South Alternative and the corresponding BNSF Alternative segment are located in a highly urbanized portion of metropolitan Bakersfield. Both alternatives would affect small areas of habitat that could support special-status wildlife species. The magnitude of these impacts is similar.

Invertebrates: Construction of the Bakersfield South Alternative would not impact suitable habitat for vernal pool fairy shrimp and vernal pool tadpole shrimp. Elderberry shrubs, the sole host plant of the valley elderberry longhorn beetle, have not been identified in the Bakersfield South Alternative. However, this species would be affected, if present, in areas where construction activities occur in unsurveyed natural areas along the Kern River where the host plant could be found. However, construction period impacts associated with this alternative would result in only minor temporary impacts on natural habitats. Due to the limited amount of suitable habitat present for special-status invertebrates, construction of the Bakersfield South Alternative would result in a slight change from existing biological conditions and little or no regional effects. Therefore, construction period impacts of the Bakersfield South Alternative would result in an effect of negligible intensity under NEPA and a less than significant impact under CEQA on special-status invertebrate species.

Fish: Within the footprint of the Bakersfield South Alternative, a small amount of marginal habitat (i.e., riverine) for the Kern brook lamprey is present in the Friant-Kern Canal. However, the construction period would not result in temporary effects on this habitat. Due to the limited amount of suitable habitat present for special-status fish, construction of the Bakersfield South Alternative would result in a slight change from existing biological conditions and little or no regional effects. Therefore, construction period impacts of the Bakersfield South Alternative would result in an effect of negligible intensity under NEPA and a less than significant impact under CEQA on special-status fish species.

Amphibians: The Bakersfield South Alternative contains limited suitable habitat (e.g., riverine, alkali desert scrub, and annual grassland) that may support western spadefoot toad (Appendix 3.7-A, Attachment 2). Because suitable habitats in the Bakersfield South Alternative are small and fragmented, the potential for special-status amphibians to occur may be limited. Due to the presence of suitable habitat, including aquatic habitat, construction of the Bakersfield South Alternative would result in the loss of habitat that has limited potential to support special-status amphibians. Therefore, construction period impacts of the Bakersfield South Alternative would result in an effect of moderate intensity under NEPA and a significant impact under CEQA on special-status amphibian species.

Reptiles: The Bakersfield South Alternative contains suitable habitat (e.g., annual grassland and alkali desert scrub) for special-status reptiles, including coast horned lizard. Because suitable habitats in the Bakersfield South Alternative are fragmented, the potential for special-status reptiles to occur may be limited. Special-status reptiles would be temporarily affected, both directly and indirectly, by construction of this alternative (Appendix 3.7-A, Attachment 2). Due to the considerable amount of natural habitat present, construction of the Bakersfield South Alternative would result in a relatively high-intensity loss of habitat that has limited potential to support special-status reptiles. Therefore, construction period impacts of the Bakersfield South Alternative would result in an effect of substantial intensity under NEPA and a significant impact under CEQA on special-status reptile species, because of the temporary direct and indirect impacts on special-status reptile species and their habitats.

Birds (includes all migratory birds covered under MBTA): The Bakersfield South Alternative contains suitable habitat (including both natural habitats and agricultural land uses) for a variety
of special-status birds, including burrowing owl. The natural areas provide suitable habitat for breeding, foraging, and migration stopover habitat. Special-status bird species and their habitat would be temporarily affected, both directly and indirectly, by construction of this alternative (Appendix 3.7-B, Attachment 2). Due to the considerable amount of suitable habitat present, construction of the Bakersfield South Alternative would result in relatively high-intensity loss of habitat that may support special-status bird species. Therefore, construction period impacts of the Bakersfield South Alternative would result in an effect of substantial intensity under NEPA and a significant impact under CEQA on special-status bird species, because of the temporary direct and indirect impacts on special-status bird species and their habitats.

Mammals: The Bakersfield South Alternative contains suitable habitat (i.e., annual grasslands, valley foothill riparian, barren), for special-status mammals, including San Joaquin Kit fox and special-status bats. In addition, urban land uses in Bakersfield are utilized by the San Joaquin kit fox. Special-status mammals would be temporarily affected, both directly and indirectly, by construction of this alternative (Appendix 3.7-B, Attachment 2). Due to the considerable amount of suitable habitat present, construction of the Bakersfield South Alternative would result in relatively high-intensity loss of special-status mammal species and their habitats. Therefore, construction period impacts of the Bakersfield South Alternative would result in an effect of substantial intensity under NEPA and a significant impact under CEQA on special-status mammal species, because of the temporary direct and indirect impacts on special-status mammal species and their habitats.

Native fauna: Suitable habitat for native fauna would be temporarily affected by construction of the Bakersfield South Alternative (Table 3.7-6). Suitable habitat for native fauna includes both developed and natural lands. Impacts on these habitats would result in measurable adverse loss to native fauna. Therefore, construction period impacts of the Bakersfield South Alternative would result in an effect of moderate intensity under NEPA and a significant impact under CEQA on native fauna.

Bakersfield Hybrid Alternative

Construction of the Bakersfield Hybrid Alternative would result in direct and indirect impacts on a number of special-status wildlife species and their habitat. These impacts would occur as discussed above under direct and indirect impacts on special-status wildlife species. The amount of temporary impacts associated with construction period impacts is provided in Appendix 3.7-B, Attachment 2. The potential for the various special-status wildlife species to occur throughout Bakersfield Hybrid Alternative varies according to the species’ known geographic range and the presence of suitable habitat capable of supporting the species’ life history (Appendix 3.7-A, Attachment 2). Table 3.7-6 lists the amount of terrestrial and aquatic habitat (in acres) that would potentially be temporarily affected by the HST alternative alignments.

Both the Bakersfield Hybrid Alternative and the corresponding segment of the BNSF Alternative are located in a highly urbanized portion of metropolitan Bakersfield. Both alternatives would affect small areas of habitat that could support special-status wildlife species. The magnitude of these impacts is similar.

Invertebrates: Construction of the Bakersfield Hybrid Alternative would not impact suitable habitat for vernal pool fairy shrimp and vernal pool tadpole shrimp. Elderberry shrubs, the sole host plant of the valley elderberry longhorn beetle, have not been identified in the Bakersfield Hybrid Alternative. However, this species would be affected, if present, in areas where construction activities occur in unsurveyed natural areas along the Kern River where the host plant could be found. However, construction period impacts associated with this alternative would result in only minor temporary impacts on natural habitats. Due to the limited amount of suitable habitat present for special-status invertebrates, construction of the Bakersfield Hybrid
Alternative would result in a slight change from existing environmental conditions and little or no regional effects. Therefore, construction period impacts of the Bakersfield Hybrid Alternative would result in an effect of negligible intensity under NEPA and a less than significant impact under CEQA on special-status invertebrate species.

Fish: Within the footprint of the Bakersfield Hybrid Alternative, a small amount of marginal habitat (i.e., riverine) for the Kern brook lamprey is present in the Friant-Kern Canal. The construction period would result in minor temporary effects on this habitat. Due to the limited amount of suitable habitat present for special-status fish, construction of the Bakersfield Hybrid Alternative would result in a slight change from existing environmental conditions and little or no regional effects. Therefore, construction period impacts of the Bakersfield Hybrid Alternative would result in an effect of negligible intensity under NEPA and a less than significant impact under CEQA on special-status fish species.

Amphibians: The Bakersfield Hybrid Alternative contains limited suitable habitat (e.g., riverine, alkali desert scrub, and annual grassland) that may support western spadefoot toad (Appendix 3.7-A, Attachment 2). Because suitable habitats in the Bakersfield Hybrid Alternative are small and fragmented, the potential for special-status amphibians to occur may be limited. Due to the presence of suitable habitat, including aquatic habitat, construction of the Bakersfield Hybrid Alternative would result in the loss of habitat that has limited potential to support special-status amphibians. Therefore, construction period impacts of the Bakersfield Hybrid Alternative would result in an effect of moderate intensity under NEPA and a significant impact under CEQA on special-status amphibian species.

Reptiles: The Bakersfield Hybrid Alternative contains suitable habitat (e.g., annual grassland and alkali desert scrub) for special-status reptiles, including coast horned lizard. Because suitable habitats in the Bakersfield Hybrid Alternative are small and fragmented, the potential for special-status reptiles to occur may be limited. Special-status reptiles would be temporarily affected, both directly and indirectly, by construction of this alternative (Appendix 3.7-A, Attachment 2). Due to the considerable amount of natural habitat present, construction of the Bakersfield Hybrid Alternative would result in a relatively high-intensity loss of habitat that has limited potential to support special-status reptiles. Therefore, construction period impacts of the Bakersfield Hybrid Alternative would result in an effect of substantial intensity under NEPA and a significant impact under CEQA on special-status reptile species.

Birds (includes all migratory birds covered under MBTA): The Bakersfield Hybrid Alternative contains suitable habitat (including both natural habitats and agricultural land uses) for a variety of special-status birds, including burrowing owl. The natural areas provide suitable habitat for breeding, foraging, and migration stopover habitat. Special-status bird species and their habitat would be temporarily affected, both directly and indirectly, by construction of this alternative (Appendix 3.7-B, Attachment 2). Due to the considerable amount of natural habitat present, construction of the Bakersfield Hybrid Alternative would result in a relatively high-intensity loss of habitat that may support special-status birds. Therefore, construction period impacts of the Bakersfield Hybrid Alternative would result in an effect of substantial intensity under NEPA and a significant impact under CEQA on special-status bird species.

Mammals: The Bakersfield Hybrid Alternative contains suitable habitat (i.e., annual grasslands, valley foothill riparian, barren), for special-status mammals, including San Joaquin Kit fox and special-status bats. In addition, urban land uses in Bakersfield are utilized by the San Joaquin kit fox. Special-status mammals would be temporarily affected, both directly and indirectly, by construction of this alternative (Appendix 3.7-B, Attachment 2). Due to the considerable amount of natural habitat present, construction of the Bakersfield Hybrid Alternative would result in a relatively high-intensity loss to special-status mammals. Therefore, construction period impacts of
the Bakersfield Hybrid Alternative would result in an effect of substantial intensity under NEPA and a significant impact under CEQA on special-status mammal species.

Native fauna: Suitable habitat for native fauna would be temporarily affected by construction of the Bakersfield Hybrid Alternative (Table 3.7-6). Suitable habitat for native fauna includes both developed and natural lands. Impacts on these habitats would result in measurable adverse loss to native fauna. Therefore, construction period impacts of the Bakersfield Hybrid Alternative would result in an effect of moderate intensity under NEPA and a significant impact under CEQA on native fauna.

Impact BIO#3 - Construction Effects on Habitats of Concern

As described in Section 3.7.4, habitats of concern occurring within the various study areas include special-status plant communities (i.e., riparian areas), jurisdictional waters, conservation areas, and protected trees (Figures 3.7-3a through 3.7-3d). Attachments 3, 4, and 5 of Appendix 3.7-B provide a comparison of impacts on habitats of concern by alternative. The HST alternatives were refined over time to avoid sensitive biological resources and/or to include additional project design features, such as elevated sections, to minimize direct effects while accommodating operation requirements.

Direct BIO#3 Impacts during Construction Period

Construction activities within and adjacent to temporary impact areas of the construction footprint would have direct impacts on habitats of concern. These impacts would include removal or disruption (i.e., trampling and crushing) of special-status plant communities by construction vehicles and personnel. With respect to vegetation removal, it should be noted that vegetation within the HST right-of-way would be permanently removed, the effects of which are analyzed under “Project Impacts.” However, adjacent vegetation requiring removal to accommodate construction operations (i.e., access and laydown areas) would be restored after construction activities are completed.

Direct construction impacts on jurisdictional waters include the placement of temporary fill during construction in both man-made and natural jurisdictional waters. Construction staging areas are planned adjacent to seasonal riverine features to facilitate construction of elevated structures, and are also planned where bridges are proposed at at-grade crossings. Temporary fill would be placed during the construction of access roads and staging/equipment storage areas. This fill would result in a temporary loss of jurisdictional waters; potential impacts on the physical, chemical and biological characteristics of aquatic substrates and food webs; and a potential increase in erosion and sediment transport into adjacent aquatic areas. The origin of these fill materials has yet to be determined; however, the temporary fill would be supplied by local sources and from existing permitted quarries, to the extent practicable. Fill material would be suitable for construction purposes and free from toxic pollutants in toxic amounts in accordance with Section 307 of the Clean Water Act.

Direct construction impacts on federal recovery plan areas include the creation of temporary partial or total movement barriers to special-status species, the loss or degradation of special-status plant and wildlife species, and the loss or degradation of the lands that could support or provide habitat for these species.

Construction activities could directly affect biological resources associated with the Allensworth ER, as described in Section 3.7.5.3, High-Speed Train Alternatives, Construction Period Impacts, Special-Status Plant Species); in Section 3.7.5.3, High-Speed Train Alternatives, Construction Period Impacts, Special-Status Wildlife Species; and in the discussions of jurisdictional waters in Section 3.7.5.3, High-Speed Train Alternatives, Construction Period Impacts, Habitats of
Concern). However, because of the proximity of the alignment alternatives to existing linear features (e.g., BNSF and SR 43) the biological resources are likely to be only indirectly affected.

Construction activities could interfere with, disturb, or conflict with the objectives, goals, and/or provisions of the MBHCP and could, therefore, result in a direct impact on this plan.

Construction of the HST project would result in the temporary removal or modification of protected trees within the construction footprint, which could conflict with the objectives, goals, and/or provisions identified in approved local, regional, or state conservation plans. Where the alignment is at-grade, removal or trimming of all protected trees is anticipated. Where the alignment is on an elevated structure in urban areas (the location of the majority of the landscaped ornamental trees), trimming and limited removal of protected trees would occur.

Indirect BIO#3 Impacts during Construction Period

Indirect impacts would include contamination of habitats of concern outside the construction footprint from construction equipment leaks; construction dust reducing photosynthetic capability (especially during flowering periods); and an increased risk of fire (e.g., construction equipment use and smoking by construction workers) in adjacent open spaces. Dust generated during construction would not be expected to significantly contribute to violations of air quality standards for PM10 and PM2.5, which are designed to protect the public welfare from harm to crops and vegetation. However, some plants may still be affected by larger dust and soil particles that are not considered air pollutants.

Temporary indirect construction impacts on special-status plant communities would include fragmentation and introduction of nonnative, invasive plant species. These changes would result in decreased viability and gradual loss of special-status plant communities. Fragmentation would result from the construction of temporary features, especially linear features, including access roads that bisect special-status plant communities. Construction activities could facilitate the spread of nonnative invasive plant species through introduction of seeds by construction equipment, vehicles, and personnel.

Because project period indirect impacts on jurisdictional waters are more extensive than, and tend to encompass, the construction period impacts, the indirect impacts on jurisdictional waters are discussed in Section 3.7.5.3, High-Speed Train Alternatives, under Impact BIO#7. These project period impacts represent the combined sum of indirect impact acreages for both construction period and project impacts.

Indirect construction impacts on federal recovery plan areas would include fragmentation of satellite areas and linkages where recovery areas are crossed by temporary construction activities (e.g., staging areas and access roads) and disturbance of natural lands within recovery areas that reduces habitat value for species recovery.

Indirect construction impacts on the Allensworth ER would be similar to those described in Section 3.7.5.3, High-Speed Train Alternatives, Construction Period Impacts, Special-Status Plant Species; in Section 3.7.5.3, High-Speed Train Alternatives, Construction Period Impacts, Special-Status Wildlife Species; and in the discussions of jurisdictional waters in Section 3.7.5.3, High-Speed Train Alternatives (Project Impacts, Habitats of Concern).

BNSF Alternative

Special-Status Plant Communities

Eight special-status plant communities and riparian areas are present within the BNSF Alternative: iodine bush scrub, alkali goldenbush scrub, bush seepweed scrub, saltgrass flats,
Fremont cottonwood forest, black willow thickets, red willow thickets, and other natural lands (including valley foothill riparian areas). In addition to the special-status plant communities that have been observed, a number of special-status plant communities could occur in unsurveyed habitats that have the potential to support special-status plant communities. Impacts on special-status plant communities would occur as described above under the direct and indirect impacts on habitats of concern. Minimal temporary impacts would occur within areas known to contain bush seepweed scrub, saltgrass flats, black willow thickets, and valley foothill riparian; substantial impacts would occur in unsurveyed habitats that may support special-status plant communities (Appendix 3.7-B, Attachment 3).

The impacts on known special-status plant communities and unsurveyed habitats that may support special-status plant communities would result in relatively high-intensity loss to special-status plant communities. Therefore, construction period impacts of the BNSF Alternative would have an effect of substantial intensity on special-status plant communities and their habitats under NEPA. The impact would be significant under CEQA.

Jurisdictional Waters

Wetlands and other waters, including seasonal wetlands, vernal pools and swales, canals/ditches, lacustrine, and riverine features are present throughout the BNSF Alternative. Direct impacts would occur during construction of the BNSF Alternative, resulting in the temporary disturbance of jurisdictional waters (Table 3.7-7; Table 3.7-8; Appendix 3.7-B, Attachments 4 and 5).

Temporary construction areas would result in direct impacts on the adjacent seasonal riverine features. Specifically, temporary construction areas are located immediately adjacent to the Kings River complex (Cole Slough, Dutch John Slough, and Kings River), Tule River, and Kern River. Additional discussions specific to impacts on major surface water features are provided in Section 3.8, Hydrology and Water Resources (see Section 3.8.5.3, High-Speed Train Alternatives, Construction Period Impacts, Common Surface Water Impacts).

Impacts on jurisdictional waters, including natural features in good condition such as seasonal riverine (e.g., Kings River Complex, Kern River) would result in influential regional effects and high-intensity loss to jurisdictional waters. Therefore, the construction period impacts of the BNSF Alternative would have an effect of substantial intensity on jurisdictional waters under NEPA. The impact would be significant under CEQA.

Conservation Areas

Recovery Plans

Due to the large area of impact, construction of the BNSF Alternative would result in relatively high-intensity loss to recovery plan areas. Therefore, construction period impacts of the BNSF Alternative would result in an effect of substantial intensity on recovery plans under NEPA and a significant impact under CEQA.
Table 3.7-7
Comparison of Construction Period Impacts on Jurisdictional Waters by Alternative

<table>
<thead>
<tr>
<th>HST Jurisdictional Waters</th>
<th>Impact Type</th>
<th>BNSF Impact Acreage</th>
<th>Hanford West Bypass 1</th>
<th>Hanford West Bypass 1 Modified</th>
<th>Hanford West Bypass 2</th>
<th>Hanford West Bypass 2 Modified</th>
<th>Corcoran Elevated</th>
<th>Corcoran Bypass</th>
<th>Allensworth Bypass</th>
<th>Wasco-Shafter Bypass</th>
<th>Bakersfield South</th>
<th>Bakersfield Hybrid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emergent wetland</td>
<td>Construction</td>
<td>=</td>
</tr>
<tr>
<td>Seasonal wetland</td>
<td>Construction</td>
<td>1.66</td>
<td>0.01 / +0.01</td>
<td>0.05 / +0.05</td>
<td>0.04 / +0.04</td>
<td>1.91 / +1.12</td>
<td>0.35 / -0.45</td>
<td>0.03 / -0.55</td>
<td>=</td>
<td>=</td>
<td>=</td>
<td>=</td>
</tr>
<tr>
<td>Vernal pools and swales</td>
<td>Construction</td>
<td>=</td>
</tr>
<tr>
<td>Canals/Ditches</td>
<td>Construction</td>
<td>9.82</td>
<td>5.12 / +3.69</td>
<td>4.84 / +3.41</td>
<td>6.93 / +5.49</td>
<td>6.79 / +5.36</td>
<td>1.92 / -0.67</td>
<td>3.06 / +0.47</td>
<td>1.28 / +0.58</td>
<td>0.19 / -0.05</td>
<td>1.03 / +0.62</td>
<td>0.99 / +0.58</td>
</tr>
<tr>
<td>Lacustrine</td>
<td>Construction</td>
<td>18.92</td>
<td>0.03 / -6.82</td>
<td>1.78 / -5.06</td>
<td>0.46 / +0.27</td>
<td>0.46 / +0.27</td>
<td>0.03 / +0.03</td>
<td>0.05 / +0.05</td>
<td>0.03 / -0.09</td>
<td>=</td>
<td>0.40 / -0.27</td>
<td>0.40 / -0.27</td>
</tr>
<tr>
<td>Seasonal riverine</td>
<td>Construction</td>
<td>0.97</td>
<td>0.47 / +0.29</td>
<td>0.47 / +0.29</td>
<td>0.46 / +0.27</td>
<td>0.46 / +0.27</td>
<td>0.03 / +0.03</td>
<td>0.03 / -0.09</td>
<td>=</td>
<td>=</td>
<td>=</td>
<td>=</td>
</tr>
</tbody>
</table>

Notes:
— = No impact or not applicable
* The "Difference Compared to Corresponding BNSF Area" represents the difference in impact acreages between an alternative alignment and its corresponding segment in the BNSF Alternative: positive (+) differences indicate that the alternative alignment results in greater impact acres than its corresponding segment in the BNSF Alternative; negative (-) differences indicate that the alternative alignment results in fewer impact acres than its corresponding segment in the BNSF Alternative.
* The impact calculations in this table include alignment alternatives and station alternatives, but do not include the HMF site alternatives.
* All impacts were calculated based on 15% engineering design construction footprint.
Table 3.7-8
Summary of Aquatic Resource Impacts on Jurisdictional Waters by Relative Condition

<table>
<thead>
<tr>
<th>Relative Condition</th>
<th>Type of Aquatic Features</th>
<th>Impact Acreage / Difference Compared with Corresponding BNSF Area(a)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BNSF Impact Acreage</td>
<td>Hanford West Bypass 1</td>
</tr>
<tr>
<td>Direct-Temporary Impacts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poor</td>
<td>Seasonal wetland, Canals/Ditches, Lacustrine</td>
<td>28.59</td>
</tr>
<tr>
<td>Fair</td>
<td>Seasonal wetland, Seasonal riverine</td>
<td>1.78</td>
</tr>
<tr>
<td>Good</td>
<td>Seasonal riverine</td>
<td>0.99</td>
</tr>
<tr>
<td>Excellent</td>
<td>N/A</td>
<td>=</td>
</tr>
</tbody>
</table>

Notes:
- \(a\) The “Difference Compared with Corresponding BNSF Area” represents the difference in impact acreages between an alternative alignment and its corresponding segment in the BNSF Alternative: positive (+) differences indicate that the alternative alignment results in a larger number of impact acres than its corresponding segment in the BNSF Alternative; negative (-) differences indicate that the alternative alignment results in a smaller number of impact acres than its corresponding segment in the BNSF Alternative.

All impacts were calculated based on the 15% engineering design construction footprint.
Allensworth Ecological Reserve

In southern Tulare County, the BNSF Alternative would overlap the eastern boundary of the Allensworth ER. A small amount (approximately 1.29 acres) of temporary direct or indirect impacts on the Allensworth ER are anticipated as a result of construction activities (Appendix 3.7-B, Attachment 5).

The construction period impacts of the BNSF Alternative would have a negligible effect on the Allensworth ER under NEPA and a less than significant impact under CEQA.

Habitat Conservation Plans

The BNSF Alternative overlaps the Metropolitan Bakersfield Habitat Conservation Plan area (City of Bakersfield and Kern County 1994). Construction of the BNSF Alternative would result in temporary impacts within the habitat conservation plan area (Appendix 3.7-B, Attachment 5).

Construction period impacts of the BNSF Alternative do not conflict with the provisions of the MBHCP because proposed mitigation ratios are similar to the “adequate mitigation” ratios presented in the plan. Also, the BNSF Alternative does not overlap with the Conceptual Focus Areas identified as potential preserve areas. Therefore, construction period impacts of the BNSF Alternative would result in no effect on habitat conservation plans under NEPA, and no impact under CEQA.

Protected Trees

Trees including those regulated by various local government regulations are present along the BNSF Alternative (Appendix 3.7-B, Attachment 6), and project construction activities would both alter and remove some portion of these resources. The majority of trees are in Fresno, and almost all of the native oaks are in the vicinity of the Kings River. Protected riparian trees associated with the Kern River are also located in the city of Bakersfield. Direct and indirect impacts would occur during construction of the BNSF Alternative, resulting in temporary disturbance to these protected trees.

The anticipated removal and trimming of protected trees (both native and landscape ornamentals) as part of the construction activities in all four counties of the Fresno to Bakersfield Section would conflict with the relevant city and county ordinances. Due to the considerable number of protected trees that would require trimming or removal, construction of the BNSF Alternative would result in relatively high-intensity loss to protected trees. Therefore, construction period impacts of the BNSF Alternative would result in an effect of substantial intensity on protected trees under NEPA and a significant impact under CEQA.

Hanford West Bypass 1 and Hanford West Bypass 1 Modified Alternatives

Special-Status Plant Communities

Field surveys identified two special-status plant communities in the Hanford West Bypass 1 Alternative and Hanford West Bypass 1 Modified Alternative: bush seepweed scrub and valley foothill riparian areas (Table 3.7-6; Appendix 3.7-B, Attachment 3). Additional unsurveyed habitats that have the potential to support special-status plant communities are present, including annual grassland and agricultural areas. Neither the Hanford West Bypass 1 alternatives nor the corresponding segment of the BNSF would have temporary impacts on observed bush seepweed scrub communities. However, the Hanford West Bypass 1 alternatives, compared with the corresponding segment of the BNSF Alternative, would result in slightly larger temporary impacts on unsurveyed habitats that have potential to support special-status plant communities and on valley foothill riparian (Appendix 3.7-B, Attachment 3, Table 3.7-6). If special-status plant...
communities are present in these habitats, the construction period impacts of the Hanford West Bypass 1 alternatives could directly and indirectly result in temporary impacts on these species.

Because the construction period impacts of either of the Hanford West Bypass 1 alternatives on special-status plant communities are minimal, only a slight change from existing biological conditions and little to no regional effects are expected. Therefore, construction period impacts of either of the Hanford West Bypass 1 alternatives would result in an effect of negligible intensity under NEPA and a less than significant impact under CEQA on special-status plant communities.

Jurisdictional Waters

Wetlands and other waters present in the Hanford West Bypass 1 alternatives include emergent and seasonal wetlands, canals/ditches, lacustrine, and seasonal riverine features (Table 3.7-7; Table 3.7-8; Appendix 3.7-B, Attachment 4). No natural jurisdictional wetland features (e.g., emergent wetlands or seasonal wetlands) would be temporarily directly affected by the selection of the Hanford West Bypass 1 Modified Alternative. However, selection of the Hanford West Bypass 1 Alternative would result in direct temporary impacts on seasonal wetlands and selection of either the Hanford West Bypass 1 Alternative or the Hanford West Bypass 1 Modified Alternative would result in direct temporary impacts on seasonal riverine features. Direct impacts on a number of man-made features (e.g., canals/ditches, and lacustrine) would occur during construction of the Hanford West Bypass 1 alternatives, resulting in the temporary disturbance of these jurisdictional waters.

Both the Hanford West Bypass 1 alternatives and the corresponding segment of the BNSF Alternative are located in a rural setting dominated by agricultural land uses. The majority of the jurisdictional waters in the Hanford West Bypass 1 alternatives and the corresponding segment of the BNSF Alternative are man-made and in poor ecological condition, with the exception of the Kings River complex and other seasonal riverine features, which are in fair to good ecological condition (Table 3.7-8). The Hanford West Bypass 1 alternatives would have similar direct temporary impacts on man-made jurisdictional waters when compared with the corresponding segment of the BNSF Alternative (Table 3.7-7; Appendix 3.7-B, Attachment 4). Like the corresponding segment of the BNSF Alternative, temporary construction areas would be located adjacent to the Kings River complex (e.g., Murphy Slough and Kings River). The direct temporary impacts associated with both of the Hanford West Bypass 1 alternatives would be similar.

Due to the impacts on natural jurisdictional water features (i.e. seasonal riverine), construction of the Hanford West Bypass 1 alternatives would cause relatively high-intensity loss of jurisdictional waters. Therefore, construction period impacts of either of the Hanford West Bypass 1 alternatives would result in an effect of substantial intensity under NEPA and a significant impact under CEQA on jurisdictional waters.

Conservation Areas

Recovery Plans

Neither of the Hanford West Bypass 1 alternatives nor the corresponding segment of the BNSF Alternative overlaps the *Recovery Plan for Upland Species of the San Joaquin Valley, California* (USFWS 1998) (Appendix 3.7-B, Attachment 5). Therefore, no temporary direct or indirect impacts on the plan area would occur as a result of the construction of either of these alternatives. Construction period impacts of either of the Hanford West Bypass 1 alternatives would result in no effect under NEPA, and no impact under CEQA on recovery plans.

Allensworth Ecological Reserve

Neither the Hanford West Bypass 1 alternatives nor the corresponding segment of the BNSF Alternative overlaps the Allensworth ER (Appendix 3.7-B, Attachment 5). Therefore, no
temporary direct or indirect impacts on the Allensworth ER would occur as a result of construction of either of these alternatives. Construction period impacts of the Hanford West Bypass 1 alternatives would result in no effect under NEPA, and no impact under CEQA on the Allensworth ER.

Habitat Conservation Plans

Neither the Hanford West Bypass 1 alternatives nor the corresponding segment of the BNSF Alternative overlaps the plan area of the MBHCP (Appendix 3.7-B, Attachment 5). Therefore, no temporary direct or indirect impacts within the MBHCP plan area would occur as a result of construction period impacts of either of these alternatives. Construction period impacts of the Hanford West Bypass 1 alternatives would result in no effect under NEPA, and no impact under CEQA on habitat conservation plans.

Protected Trees

Numerous protected trees were identified in the Hanford West Bypass 1 alternatives, and few protected trees were identified in the corresponding segment of the BNSF Alternative (Appendix 3.7-B, Attachment 6). Construction activities would both alter and remove some portion of these resources. These impacts would occur through the same mechanisms as those described above under the direct and indirect impacts for habitats of concern.

Construction of either of the Hanford West Bypass 1 alternatives would result in an increase in the number of protected trees disturbed when compared with the construction of the corresponding segment of the BNSF Alternative (Appendix 3.7-B, Attachment 6). Construction impacts on protected trees would be the same for both Hanford West Bypass 1 alternatives.

The removal and trimming of protected trees related to the construction period impacts of the Hanford West Bypass 1 alternatives would result in a relatively high-intensity loss of this resource. Therefore, the construction period impacts of the Hanford West Bypass 1 alternatives would result in an effect of substantial intensity under NEPA and a significant impact under CEQA.

Hanford West Bypass 2 and Hanford West Bypass 2 Modified Alternatives

Special-Status Plant Communities

There is one known occurrence of special-status plant communities within the Hanford West Bypass 2 alternatives: valley foothill riparian. However, special-status plant communities have the potential to occur in unsurveyed habitats with the potential to support special-status plant communities within the footprint of these alternatives. Temporary impacts would occur in these unsurveyed habitats with the potential to support special-status plant communities (Appendix 3.7-B, Attachment 3). Impacts on special-status plant communities, if present, would occur as described above under direct and indirect impacts for habitats of concern.

The Hanford West Bypass 2 alternatives would result in slightly more temporary impacts on valley foothill riparian habitat and unsurveyed habitats that have the potential to support special-status plant communities than the corresponding segment of the BNSF Alternative (Appendix 3.7-B, Attachment 3).

Because the construction period impacts of the Hanford West Bypass 2 alternatives on special-status plant communities are minimal, only a slight change from existing biological conditions and little to no regional effects are expected. Therefore, construction period impacts of the Hanford West Bypass 2 alternatives would result in an effect of negligible intensity under NEPA and a less than significant impact under CEQA on special-status plant communities.
Jurisdictional Waters

Wetlands and other waters present in the Hanford West Bypass 2 alternatives include emergent and seasonal wetlands, canals/ditches, lacustrine features, and seasonal riverine (Table 3.7-7; Table 3.7-8; Appendix 3.7-B, Attachments 4 and 5). No jurisdictional wetlands (e.g., emergent wetlands, or seasonal wetlands) would be temporarily directly affected by the selection of the Hanford West Bypass 2 Modified Alternative. The Hanford West Bypass 2 Alternative would result in direct temporary impacts on seasonal wetlands. Both the Hanford West Bypass 2 Alternative and the Hanford West Bypass 2 Modified Alternative would result in direct temporary impacts on seasonal riverine features. Direct temporary impacts on a number of man-made features (e.g., canals/ditches, and lacustrine features) would occur during construction of either of the Hanford West Bypass 2 alternatives, resulting in the temporary disturbance of these jurisdictional waters.

Both the Hanford West Bypass 2 alternatives and the corresponding segment of the BNSF Alternative are in a rural setting dominated by agricultural land uses. The majority of the jurisdictional waters in the Hanford West Bypass 2 alternatives and the corresponding segment of the BNSF Alternative are man-made and in poor ecological condition, with the exception of the Kings River Complex and other seasonal riverine features, which are in fair to good ecological condition (Table 3.7-8). The Hanford West Bypass 2 alternatives would have similar temporary direct impacts on jurisdictional waters when compared with the corresponding segment of the BNSF Alternative (Table 3.7-7; Appendix 3.7-B, Attachment 4). Like the corresponding segment of the BNSF Alternative, temporary construction areas would be located adjacent to the Kings River complex (e.g., Murphy Slough and Kings River). The direct temporary impacts associated with the Hanford West Bypass 2 Alternative and the Hanford West Bypass 2 Modified Alternative would be similar.

The construction period impacts of the Hanford West Bypass 2 alternatives on jurisdictional waters, especially impacts on natural features (i.e. seasonal riverine) would cause relatively high-intensity loss of jurisdictional waters. Therefore, the construction period impacts of the Hanford West Bypass 2 alternatives would result in an effect of substantial intensity under NEPA and a significant impact under CEQA on jurisdictional waters.

Conservation Areas

Recovery Plans

Neither the Hanford West Bypass 2 alternatives nor the corresponding segment of the BNSF Alternative overlaps the Recovery Plan for Upland Species of the San Joaquin Valley, California (USFWS 1998) (Appendix 3.7-B, Attachment 5). Therefore, no temporary direct or indirect impacts in the plan area would occur as a result of the construction of either of these alternatives. The construction period impacts of the Hanford West Bypass 2 alternatives would result in no effect under NEPA and no impact under CEQA on recovery plans.

Allensworth Ecological Reserve

Neither the Hanford West Bypass 2 alternatives nor the corresponding segment of the BNSF Alternative overlaps the Allensworth ER (Appendix 3.7-B, Attachment 5). Therefore, no temporary direct or indirect impacts on the Allensworth ER would occur as a result of construction of either of these alternatives. The construction period impacts of the Hanford West Bypass 2 alternatives would result in no effect under NEPA and no impact under CEQA on the Allensworth ER.

Habitat Conservation Plans

Neither the Hanford West Bypass 2 alternatives nor the corresponding segment of the BNSF Alternative overlaps the plan area of the MBHCP (Appendix 3.7-B, Attachment 5). Therefore, no temporary direct or indirect impacts within the MBHCP plan area would occur as a result of
construction period impacts of these alternatives. Construction period impacts of the Hanford West Bypass 2 alternatives would result in no effect under NEPA and no impact under CEQA on habitat conservation plans.

Protected Trees

Impacts on protected trees in the footprint of the Hanford West Bypass 2 alternatives would be the same as those discussed for the Hanford West Bypass 1 alternatives. Several protected trees were identified in the temporary impact area of the Hanford West Bypass 2 alternatives, and few protected trees were identified in the temporary impact area of the corresponding segment of the BNSF Alternative (Appendix 3.7-B, Attachment 6). Construction activities would both alter and remove some portion of these resources.

Construction of either of the Hanford West Bypass 2 alternatives would result in an increase in the number of protected trees disturbed compared with the construction of the corresponding segment of the BNSF Alternative (Appendix 3.7-B, Attachment 6). Impacts on protected trees would be the same for both Hanford West Bypass 2 alternatives.

The removal and trimming of protected trees related to construction period impacts of either of the Hanford West Bypass 2 alternatives would result in relatively high-intensity loss of this resource. Therefore, the construction period impacts of either of the Hanford West Bypass 2 alternatives would result in an effect of substantial intensity under NEPA and a significant impact under CEQA.

Corcoran Elevated Alternative

Special-Status Plant Communities

Field surveys identified three special-status plant communities in the Corcoran Elevated Alternative: saltgrass flats, black willow thickets, and valley foothill riparian habitat located along the Tule River (Table 3.7-6; Appendix 3.7-B, Attachment 3). However, temporary impacts would only occur in a minimal area of saltgrass flats. Additional unsurveyed habitats that have the potential to support special-status plant communities are present (Appendix 3.7-B, Attachment 3). Habitats in the Corcoran Elevated Alternative, including these unsurveyed areas, are mainly urban and agricultural lands (Table 3.7-6), which have no to low potential of supporting special-status plant communities. The Corcoran Elevated Alternative compared to the corresponding segment of the BNSF Alternative would result in a slightly larger area of temporary impact on unsurveyed habitats that have a low potential to support special-status plant communities (Appendix 3.7-B, Attachment 3). If special-status plant communities are present in these habitats, construction period impacts of the Corcoran Elevated Alternative could directly and indirectly result in temporary impacts on these communities.

Because construction period impacts of the Corcoran Elevated Alternative on special-status plant communities would be minimal, only a slight change to existing biological conditions and little to no regional effects are expected. Therefore, construction period impacts of the Corcoran Elevated Alternative would result in an effect of negligible intensity under NEPA and a less than significant impact under CEQA on special-status plant communities.

Jurisdictional Waters

Wetlands and other waters present in the Corcoran Elevated Alternative include seasonal wetlands, vernal pools and swales, agricultural canals/ditches, lacustrine features, and seasonal riverine (e.g., Cross Creek and Tule River) (Table 3.7-7; Table 3.7-8; Appendix 3.7-B, Attachments 4 and 5). Jurisdictional wetlands (e.g., seasonal wetlands) would be temporarily directly affected by the use of this alternative. Direct permanent impacts on seasonal riverine and
a number of man-made features (e.g., canals/ditches, and lacustrine features) would occur during construction of the Corcoran Elevated Alternative, resulting in the temporary disturbance of these jurisdictional waters. The Corcoran Elevated Alternative and the corresponding segment of the BNSF Alternative are similarly located in an urban and rural setting.

The majority of the jurisdictional waters in the Corcoran Elevated Alternative and corresponding BNSF Alternative segment are man-made and in poor ecological condition, with the exception of Cross Creek, which is in fair ecological condition and Tule River, which is in relatively good ecological condition (Table 3.7-8). The Corcoran Elevated Alternative will result in similar temporary impacts on jurisdictional waters when compared with the corresponding segment of the BNSF Alternative (Table 3.7-7; Appendix 3.7-B, Attachment 4). Like the corresponding segment of the BNSF Alternative, temporary construction areas would be located adjacent to the Tule River.

The construction period impacts of the Corcoran Elevated Alternative on jurisdictional waters, especially impacts on natural features (i.e., seasonal riverine) would cause relatively high-intensity loss of jurisdictional waters. Therefore, the construction period impacts of the Corcoran Elevated Alternative would result in an effect of substantial intensity under NEPA and a significant impact under CEQA on jurisdictional waters.

Conservation Areas

Recovery Plans

The Corcoran Elevated Alternative overlaps the Recovery Plan for Upland Species of the San Joaquin Valley, California (USFWS 1998). A portion of the Corcoran Elevated Alternative occurs in a satellite area identified in the recovery plan area. Temporary direct or indirect impacts would occur on the recovery plan area as a result of construction of this alternative (Appendix 3.7-B, Attachment 5). Selection of the Corcoran Elevated Alternative would slightly decrease the amount of temporary disturbance to the recovery plan area compared to the amount of temporary disturbance to the corresponding BNSF Alternative segment.

Due to the large area of impact, construction of the Corcoran Elevated Alternative would result in relatively high-intensity loss to recovery plan areas. Therefore, construction period impacts of the Corcoran Elevated Alternative would result in an effect of substantial intensity under NEPA and a significant impact under CEQA on recovery plans.

Allensworth Ecological Reserve

Neither the Corcoran Elevated Alternative nor its corresponding segment in the BNSF Alternative overlaps the Allensworth ER (Appendix 3.7-B, Attachment 5). Therefore, no temporary direct or indirect impacts on the Allensworth ER would occur as a result of construction of either of these alternatives. Construction period impacts of the Corcoran Elevated Alternative would result in no effect under NEPA and no impact under CEQA on the Allensworth ER.

Habitat Conservation Plans

Neither the Corcoran Elevated Alternative nor its corresponding segment in the BNSF Alternative overlaps the plan area of the MBHCP (Appendix 3.7-B, Attachment 5). Therefore, no temporary direct or indirect impacts within the MBHCP plan area would occur as a result of construction period impacts of either of these alternatives. Construction period impacts of the Corcoran Elevated Alternative would result in no effect under NEPA and no impact under CEQA on habitat conservation plans.
Protected Trees

Trees that are regulated under the Kings County General Plan and/or the Corcoran City Code are present in both the Corcoran Elevated Alternative and the corresponding segment of the BNSF Alternative (Appendix 3.7-B, Attachment 6). Construction activities would both alter and remove some portion of these resources.

Construction of the Corcoran Elevated Alternative, compared with the construction of the corresponding segment of the BNSF Alternative, would disturb one less protected tree (Appendix 3.7-B, Attachment 6).

Construction period impacts of the Corcoran Elevated Alternative are minimal and are expected to result in only a slight change to existing biological conditions and little to no regional effects. Therefore, construction period impacts of the Corcoran Elevated Alternative would result in an effect of negligible intensity under NEPA and a less than significant impact under CEQA.

Corcoran Bypass Alternative

Special-Status Plant Communities

Field surveys identified three special-status plant communities in the Corcoran Bypass Alternative: saltgrass flats, black willow thickets, and valley foothill riparian habitat located along the Tule River (Table 3.7-6; Appendix 3.7-B, Attachment 3). Additional unsurveyed habitats with the potential to support special-status plant communities, including annual grasslands, were identified and could also support special-status plant communities. Although three special-status plant communities are present in the alignment, minimal temporary impacts would occur in these communities. Also, minimal temporary impacts would occur in unsurveyed habitats that have the potential to support special-status plant communities.

The Corcoran Bypass Alternative would result in slightly fewer temporary impacts on saltgrass flats, black willow thickets, valley foothill riparian, and unsurveyed habitats that have the potential to support special-status plant communities than the corresponding segment of the BNSF Alternative.

Because construction period impacts of the Corcoran Bypass Alternative on special-status plant communities would be minimal, only a slight change to existing biological conditions and little to no regional effects are expected. Therefore, construction period impacts of the Corcoran Bypass would result in an effect of negligible intensity under NEPA and a less than significant impact under CEQA on special-status plant communities.

Jurisdictional Waters

Wetlands and other waters present in the Corcoran Bypass Alternative include seasonal wetlands, vernal pools and swales, agricultural canals/ditches, lacustrine features, and seasonal riverine (e.g., Cross Creek and Tule River) (Table 3.7-7; Table 3.7-8; Appendix 3.7-B, Attachments 4 and 5). No natural jurisdictional wetlands (i.e., seasonal wetlands and vernal pools and swales) would be temporarily directly affected by the use of this alternative (Table 3.7-7; Appendix 3.7-B, Attachment 4); however, temporary impacts would occur on seasonal riverine features. Limited direct impacts on a number of man-made features (e.g., canals/ditches, and lacustrine features) would occur during construction of the Corcoran Bypass Alternative, resulting in the temporary disturbance of these jurisdictional waters.

The Corcoran Bypass Alternative would be located in agricultural areas east of Corcoran, whereas the corresponding BNSF Alternative segment would be routed through Corcoran, along SR 43 and the BNSF Railway right-of-way. The majority of the jurisdictional waters in the Corcoran Bypass
and the corresponding segment of the BNSF Alternative are man-made and in poor ecological condition, with the exception of the Cross Creek, which is in fair ecological condition, and Tule River, which is in relatively good ecological condition (Table 3.7-8).

Both the Corcoran Bypass Alternative and the corresponding segment of the BNSF Alternative would have no temporary impacts on wetlands (e.g., seasonal wetland or vernal pools and swales) (Table 3.7-7; Appendix 3.7-B, Attachment 4). However, overall, the Corcoran Bypass would have slightly more temporary impacts on man-made jurisdictional waters (canals/ditches, lacustrine features, etc.) and seasonal riverine features compared with the corresponding segment of the BNSF Alternative (Table 3.7-7; Appendix 3.7-B, Attachment 4). Unlike the corresponding segment of the BNSF Alternative, the Corcoran Bypass would not require the temporary construction area adjacent to the Tule River.

Construction of the Corcoran Bypass Alternative would result in impacts on man-made and natural jurisdictional water features and would cause relatively high-intensity loss of jurisdictional waters. Therefore, construction period impacts of the Corcoran Bypass Alternative would result in an effect of substantial intensity under NEPA and a significant impact under CEQA on jurisdictional waters.

Conservation Areas

Recovery Plans

The Corcoran Bypass Alternative overlaps one of two recovery plan areas that occur in the region: *Recovery Plan for Upland Species of the San Joaquin Valley, California* (USFWS 1998). A portion of the Corcoran Bypass Alternative occurs in a satellite area identified in the recovery plan area. Construction of the Corcoran Bypass Alternative would result in temporary disturbance of this recovery plan area (Appendix 3.7-B, Attachment 5). Selection of the Corcoran Bypass Alternative would result in a larger temporary disturbance to the recovery plan area when compared with the amount in the corresponding BNSF Alternative segment.

Due to the large area of impact, construction of the Corcoran Bypass Alternative would result in relatively high-intensity loss to recovery plan areas. Therefore, construction period impacts of the Corcoran Bypass Alternative would result in an effect of substantial intensity under NEPA, and a significant impact under CEQA on recovery plans.

Allensworth Ecological Reserve

Neither the Corcoran Bypass Alternative nor its corresponding segment in the BNSF Alternative overlaps the Allensworth ER (Appendix 3.7-B, Attachment 5). Therefore, no temporary direct or indirect impacts on the Allensworth ER would occur as a result of construction of either of these alternatives. Construction of the Corcoran Bypass Alternative would result in no effect under NEPA, and in no impact under CEQA on the Allensworth ER.

Habitat Conservation Plans

Neither the Corcoran Bypass Alternative nor its corresponding segment in the BNSF Alternative overlaps the plan area of the MBHCP (Appendix 3.7-B, Attachment 5). Therefore, no temporary direct or indirect impacts within the habitat conservation plan area would occur as a result of construction period impacts of either of these alternatives. Construction period impacts of the Corcoran Bypass Alternative would result in no effect under NEPA and no impact under CEQA on habitat conservation plans.

Protected Trees

Trees that are regulated under the Kings County General Plan and/or the Corcoran City Code are present in the Corcoran Bypass Alternative or the corresponding segment of the BNSF Alternative.
No construction period impacts on protected trees would occur with the Corcoran Bypass Alternative. However, project period activities would both alter and remove some portion of these resources.

Construction of the Corcoran Bypass Alternative would result in a decrease in the number of protected trees disturbed compared to the corresponding segment of the BNSF Alternative. Construction period impacts on protected trees of the Corcoran Bypass Alternative would result in no effect under NEPA and no impact under CEQA.

Allensworth Bypass Alternative

Special-Status Plant Communities

During the field surveys, six special-status plant communities were identified in the Allensworth Bypass Alternative: iodine brush scrub, saltgrass flats, bush seepweed scrub, iodine bush scrub, black willow thickets, and valley foothill riparian (Table 3.7-6; Appendix 3.7-B, Attachment 3). Special-status plant communities could also be present in unsurveyed habitats that have the potential to support special-status plant communities (e.g., annual grasslands, riverine, and fragmented natural areas). Of the identified special-status plant communities in the Allensworth Bypass Alternative, temporary impacts would only occur in valley foothill riparian, saltgrass flats, and black willow thickets (changes result from a minor shift in the footprint and now include temporary impacts on these resources; permanent impacts on these resources were previously identified under Impact BIO#7). However, substantial temporary impacts would occur in unsurveyed habitats that have the potential to support special-status plant communities.

The Allensworth Bypass Alternative would result in more temporary impacts on valley foothill riparian, saltgrass flats, and black willow thickets than the corresponding segment of the BNSF Alternative (Table 3.7-6). The Allensworth Bypass Alternative would result in substantially more temporary impacts on unsurveyed habitats that have the potential to support special-status plant communities than the corresponding segment of the BNSF Alternative (Appendix 3.7-B, Attachment 1).

Due to the presence of three known special-status plant communities on considerable areas of unsurveyed habitats that have the potential to support special-status plant communities, construction of the Allensworth Bypass Alternative may result in a measurable loss to this resource. Therefore, the construction period impacts of the Allensworth Bypass Alternative would result in an effect of moderate intensity under NEPA and a significant impact under CEQA on special-status plant communities.

Jurisdictional Waters

Surveys for vernal pools were used to determine the routing of the Allensworth Bypass to minimize impacts on wetlands and other waters (a reduction of more than 100 acres in the Wetland Study Area). Jurisdictional waters are present in the Allensworth Bypass Alternative, including seasonal wetlands, vernal pools and swales, ditches, lacustrine features (e.g., Alpaugh Irrigation District pond), and seasonal riverine (e.g., Poso Creek). However, minimal direct temporary impacts would occur under the Allensworth Bypass Alternative on natural wetland features (Table 3.7-7; Table 3.7-8; Appendix 3.7-B, Attachments 4 and 5).

The Allensworth Bypass Alternative travels primarily through agricultural lands, in contrast with the corresponding segment of the BNSF Alternative, which runs adjacent to significant undeveloped natural landscape located parallel to SR 43 and along the BNSF right-of-way. The majority of the wetland features (e.g., vernal pools and swales) as well as Poso Creek are located in a highly fragmented landscape but are in relative fair-to-good ecological condition. The
remaining man-made features (e.g., canals/ditches, lacustrine features) are in relatively poor ecological condition (Table 3.7-8).

The Allensworth Bypass Alternative would slightly decrease the temporary impact on seasonal wetland and seasonal riverine features compared with the corresponding segment of the BNSF Alternative; however, the Allensworth Bypass Alternative would increase the temporary impacts on man-made features (Table 3.7-7; Appendix 3.7-B, Attachment 4).

Because of the sensitivity of vernal pools and swales and the impacts on other jurisdictional waters, the construction period impacts of the Allensworth Bypass Alternative would result in influential regional effects and relatively high-intensity loss to these resources. Therefore, the construction period impacts of the Allensworth Bypass Alternative would result in an effect of substantial intensity under NEPA and a significant impact under CEQA on jurisdictional waters.

Conservation Areas

Recovery Plans

The Allensworth Bypass Alternative overlaps the Recovery Plan for Upland Species of the San Joaquin Valley, California (USFWS 1998). A portion of the Allensworth Bypass Alternative occurs in satellite and linkage areas identified in the recovery plan area. Construction of the Allensworth Bypass Alternative would result in temporary disturbance of this recovery plan area (Appendix 3.7-B, Attachment 5).

The Allensworth Bypass Alternative and its corresponding segment in the BNSF Alternative both overlap the recovery plan area for the Recovery Plan for Upland Species of the San Joaquin Valley, California (USFWS 1998). Selection of the Allensworth Bypass Alternative would slightly decrease the amount of temporary disturbance to the satellite area and greatly increase the amount of temporary disturbance to the linkage area identified in the recovery plan when compared with that of the corresponding segment of the BNSF Alternative (Appendix 3.7-B, Attachment 5).

Due to the large area of impact, construction of the Allensworth Bypass Alternative would result in relatively high-intensity loss to recovery plan areas. Therefore, construction period impacts of the Allensworth Bypass Alternative would result in an effect of substantial intensity under NEPA and a significant impact under CEQA on recovery plans because of the temporary direct and indirect impacts on the plan area.

Allensworth Ecological Reserve

The Allensworth Bypass Alternative does not overlap the Allensworth ER (Appendix 3.7-B, Attachment 5). This alternative is approximately 0.5 mile west of the Allensworth ER. Therefore, no direct or indirect impacts on the Allensworth ER would occur as a result of construction of this alternative. The construction of the Allensworth Bypass Alternative would reduce temporary impacts on the Allensworth ER compared with the corresponding segment of the BNSF Alternative (Appendix 3.7-B, Attachment 5).

Construction of the Allensworth Bypass Alternative would result in no effect under NEPA and no impact under CEQA to the Allensworth ER because the corresponding segment of the BNSF Alternative is the only segment that overlaps the Allensworth ER.

Habitat Conservation Plans

Neither the Allensworth Bypass Alternative nor its corresponding segment of the BNSF Alternative overlaps the plan area of the MBHCP (Appendix 3.7-B, Attachment 5). Therefore, no temporary direct or indirect impacts within the habitat conservation plan area would occur as a result of the construction period impacts of either of these alternatives. Construction period impacts of the
Allensworth Bypass Alternative would result in no effect under NEPA, and no impact under CEQA on habitat conservation plans.

Protected Trees

No protected trees were identified in the temporary impact area of the Allensworth Bypass Alternative, and two protected trees were identified in the corresponding segment of the BNSF Alternative (Appendix 3.7-B, Attachment 6). This impact would occur as described above in the section on the direct and indirect impacts on habitats of concern. There are no protected trees in the Allensworth Bypass Alternative. Therefore, there would be no effect under NEPA and no impact under CEQA for construction period impacts on protected trees.

Wasco-Shafter Bypass Alternative

Special-Status Plant Communities

There are no known occurrences of special-status plant communities within the Wasco-Shafter Bypass Alternative. However, special-status plant communities have the potential to occur in unsurveyed habitats that have the potential to support special-status plant communities within this alternative (Appendix 3.7-B, Attachment 3). Temporary impacts would occur in these unsurveyed habitats that may support special-status plant communities.

The Wasco-Shafter Bypass Alternative would result in slightly more temporary impacts on unsurveyed habitats that have the potential to support special-status plant communities than the corresponding segment of the BNSF Alternative (Appendix 3.7-B, Attachment 3).

Because construction of the Wasco-Shafter Bypass Alternative would affect no known special-status plant communities and impacts would be limited to unsurveyed habitats that have the potential to support special-status plant communities, only a slight change to existing biological conditions and little to no regional effects are expected. Therefore, construction period impacts of the Wasco-Shafter Bypass Alternative would result in an effect of negligible intensity under NEPA and a less than significant impact under CEQA on special-status plant communities.

Jurisdictional Waters

Jurisdictional waters in the Wasco-Shafter Bypass Alternative include only man-made structures (e.g., ditches and lacustrine features) (Table 3.7-7; Table 3.7-8; Appendix 3.7-B, Attachments 4 and 5). No natural jurisdictional waters (e.g., seasonal wetlands, vernal pools and swales, and seasonal riverine) would be temporarily affected by the use of this alternative. Direct impacts would occur during construction of the Wasco-Shafter Bypass Alternative, resulting in the temporary disturbance of these man-made jurisdictional waters. The Wasco-Shafter Bypass Alternative avoids urban centers and travels entirely through agricultural areas east of SR 43, whereas the corresponding BNSF Alternative segment travels through the urban centers of Wasco and Shafter along the existing, disturbed BNSF Railway right-of-way. Regardless of the alternative, the majority of the impacts would be on man-made features in relatively poor ecological condition that provide limited ecological value (Table 3.7-8). When considering the magnitude of the impacts, the selection of the Wasco-Shafter Bypass Alternative would marginally decrease the amount of temporary direct impacts on jurisdictional waters compared with the amount of the corresponding segment of the BNSF Alternative. These differences would be negligible, considering the man-made nature of the majority of these resources.

Because construction period impacts of the Wasco-Shafter Bypass would be limited to man-made features, the effects of this alternative would be incremental on a regional scale. Therefore, construction period impacts of the Wasco-Shafter Bypass Alternative would result in an effect of moderate intensity under NEPA and a significant impact under CEQA on jurisdictional waters.
Conservation Areas

Recovery Plans
The Wasco-Shafter Bypass Alternative overlaps the Recovery Plan for Upland Species of the San Joaquin Valley, California (USFWS 1998). A portion of the Wasco-Shafter Bypass occurs in a linkage area identified in this recovery plan. Construction of the Wasco-Shafter Bypass Alternative would result in temporary disturbance of this recovery plan area (Appendix 3.7-B, Attachment 5).

The Wasco-Shafter Bypass Alternative and the corresponding segment in the BNSF Alternative both overlap the recovery plan area for the Recovery Plan for Upland Species of the San Joaquin Valley, California (USFWS 1998). Selection of the Wasco-Shafter Bypass Alternative would decrease the amount of temporary disturbance to the linkage recovery plan area compared to the corresponding segment of the BNSF Alternative (Appendix 3.7-B, Attachment 5).

The limited area of impact to recovery plan areas resulting from construction period impacts of the Wasco-Shafter Bypass Alternative, would lead to the loss of this resource. Therefore, construction period impacts of the Wasco-Shafter Bypass Alternative would result in an effect of moderate intensity under NEPA, and a significant impact under CEQA on recovery plans.

Allensworth Ecological Reserve
Neither the Wasco-Shafter Bypass Alternative nor the corresponding segment of the BNSF Alternative overlaps the Allensworth ER (Appendix 3.7-B, Attachment 5). Therefore, no temporary direct or indirect impacts on the Allensworth ER would occur as a result of construction of these alternatives. Construction period impacts of the Wasco-Shafter Bypass Alternative would result in no effect under NEPA, and no impact under CEQA on the Allensworth ER, because no temporary direct or indirect impacts on the Allensworth ER are anticipated.

Habitat Conservation Plans
Both the Wasco-Shafter Bypass Alternative and the corresponding segment of the BNSF Alternative overlap the MBHCP area. Construction of either alternative would result in temporary impacts within the habitat conservation plan area (Appendix 3.7-B, Attachment 5).

Construction period impacts of the Wasco-Shafter Bypass Alternative and the corresponding segment of the BNSF Alternative do not conflict with the provisions of the MBHCP because proposed mitigation ratios are similar to the “adequate mitigation” ratios presented in the plan. Also, the Wasco-Shafter Bypass Alternative and the corresponding segment of the BNSF Alternative do not overlap with the Conceptual Focus Areas identified as potential preserve areas. Therefore, construction period impacts of the Wasco-Shafter Bypass Alternative would result in no effect under NEPA, and no impact under CEQA on habitat conservation plans.

Protected Trees
Although trees are present in the footprint of the Wasco-Shafter Bypass Alternative, no construction period impacts on protected trees were identified in the Wasco-Shafter Bypass or in the corresponding segment of the BNSF Alternative (Appendix 3.7-B, Attachment 6). Therefore, there would be no effect under NEPA and no impact under CEQA for construction period impacts on protected trees.

Bakersfield South Alternative

Special-Status Plant Communities
During the field surveys, valley foothill riparian and black willow thickets were identified along the Kern River of the Bakersfield South Alternative (Table 3.7-6; Appendix 3.7-B, Attachment 3). Also, this alternative includes unsurveyed habitats that may support special-status plant...
communities. However, the Bakersfield South Alternative is in an urban setting, and the remaining natural areas are small and fragmented; therefore, special-status plant communities are not expected to be present (except where identified along the Kern River). Temporary impacts would occur in one identified special-status plant community (i.e., valley foothill riparian) in the Bakersfield South Alternative. Temporary impacts would also occur in unsurveyed habitats that have the potential to support special-status plant communities. Selection of the Bakersfield South Alternative would cause slightly more temporary impacts on one special-status plant community (i.e., valley foothill riparian) and would cause fewer temporary impacts on black willow thickets and on unsurveyed habitats that have the potential to support special-status plant communities than would the corresponding segment of the BNSF Alternative (Appendix 3.7-B, Attachment 3). Riparian habitat along the Kern River Corridor receives additional protection under Chapter 19.73 of the Kern County ordinances.

Due to the large area of impact, including large areas of unsurveyed habitats that have the potential to support special-status plant communities, construction of the Bakersfield South Alternative may result in relatively high-intensity loss to special-status plant communities. Therefore, construction period impacts of the Bakersfield South Alternative would result in an effect of substantial intensity under NEPA and a significant impact under CEQA on special-status plant communities and their habitats.

Jurisdictional Waters

Wetlands and other waters in the footprint of the Bakersfield South Alternative include seasonal riverine (e.g., Kern River) and the associated riparian buffer (as discussed above under special-status plant communities), as well as seasonal wetlands, canals/ditches, and lacustrine. However, no natural jurisdictional wetlands (e.g., seasonal wetlands) would be temporarily affected by the use of this alternative (Table 3.7-7; Table 3.7-8; Appendix 3.7-B, Attachments 4 and 5). Direct temporary impacts would occur during construction of the Bakersfield South Alternative, resulting in the temporary disturbance of seasonal riverine features (e.g., the Kern River) and man-made features, including canals/ditches and lacustrine features.

Both the Bakersfield South Alternative and the corresponding segment of the BNSF Alternative would be located in areas of urban Bakersfield that contain similar man-made and natural wetlands and other waters. The majority of the jurisdictional waters in the Bakersfield South Alternative and corresponding segment of the BNSF Alternative are man-made and in poor ecological condition, with the exception of the Kern River and the seasonal wetlands, which are in fair to good ecological condition (Table 3.7-8).

In some instances, because the alternatives are located close together, nearly identical impacts on the various jurisdictional waters are anticipated. When compared with the corresponding segment of the BNSF Alternative, the Bakersfield South Alternative would marginally decrease the amount of temporary direct impacts on other waters (Table 3.7-7; Appendix 3.7-B, Attachment 4).

Neither the Bakersfield South Alternative nor the corresponding segment of the BNSF Alternative would have direct temporary impacts on wetland features (Table 3.7-7; Appendix 3.7-B, Attachment 4). Impacts on the Kern River would be similar regardless of the alternative selected, and as with the corresponding segment of the BNSF Alternative, a temporary construction area would be located adjacent to the Kern River.

Construction of the Bakersfield South Alternative would affect both man-made and natural jurisdictional waters and would result in relatively high-intensity loss to these features. Therefore, construction period impacts of the Bakersfield South Alternative would result in an effect of substantial intensity under NEPA and a significant impact under CEQA on jurisdictional waters.
Conservation Areas

Recovery Plans
The Bakersfield South Alternative overlaps the Recovery Plan for Upland Species of the San Joaquin Valley, California (USFWS 1998). A portion of the Bakersfield South Alternative occurs in a satellite area identified in this recovery plan. Construction of the Bakersfield South Alternative would result in temporary disturbance of this recovery plan area (Appendix 3.7-B, Attachment 5).

Selection of the Bakersfield South Alternative would slightly increase the amount of temporary disturbance to this recovery plan area when compared with the corresponding segment of the BNSF Alternative (Appendix 3.7-B, Attachment 5).

Due to the large area of impact, construction of the Bakersfield South Alternative would result in relatively high-intensity loss to recovery plan areas. Therefore, construction period impacts under the Bakersfield South Alternative would result in an effect of substantial intensity under NEPA and a significant impact under CEQA on recovery plans because of the temporary direct and indirect impacts on the plan area.

Allensworth Ecological Reserve
Neither the Bakersfield South Alternative nor its corresponding segment of the BNSF Alternative overlaps the Allensworth ER (Appendix 3.7-B, Attachment 5). Therefore, no temporary direct or indirect impacts on the Allensworth ER would occur as a result of construction of either of these alternatives.

Habitat Conservation Plans
The Bakersfield South Alternative overlaps the MBHCP. Construction of the Bakersfield South Alternative would result in temporary disturbance within the plan area of the MBHCP (Appendix 3.7-B, Attachment 5).

The Bakersfield South Alternative and the corresponding segment of the BNSF Alternative both overlap the plan area for the MBHCP. Neither alternative conflicts with the provisions of the MBHCP because proposed mitigation ratios are similar to the “adequate mitigation” ratios presented in the plan. Also, the Bakersfield South Alternative and the corresponding segment of the BNSF Alternative do not overlap with the Conceptual Focus Areas identified as potential preserve areas. Therefore, construction period impacts of the Bakersfield South Alternative would result in no effect under NEPA, and no impact under CEQA on habitat conservation plans.

Protected Trees
Trees that may be regulated are present in the Bakersfield South Alternative (Appendix 3.7-B, Attachment 6). Direct impacts would occur during construction of the Bakersfield South Alternative and would result in the disturbance of protected trees. Selection of the Bakersfield South Alternative would decrease the number of trees removed; however, all of these trees are landscape/ornamental or could not be identified during surveys and may not qualify as protected trees. The removal and trimming of potential protected trees as a result of the construction of the Bakersfield South Alternative would be considerable and would result in the loss of this resource. Therefore, the construction period impacts of the Bakersfield South Alternative would result in an effect of moderate intensity under NEPA and a less than significant impact under CEQA. This change is the result of a decrease in the number of protected trees affected due to design refinements in the construction footprint.
Bakersfield Hybrid Alternative

Special-Status Plant Communities

During the field surveys, valley foothill riparian and black willow thickets were identified along the Kern River of the Bakersfield Hybrid Alternative (Table 3.7-6; Appendix 3.7-B, Attachment 3). Also, this alternative includes unsurveyed habitats that may support special-status plant communities. However, the Bakersfield Hybrid Alternative is in an urban setting, and the remaining natural areas are small and fragmented; therefore, special-status plant communities are not expected to be present (except where identified along the Kern River). Impacts on special-status plant communities would occur as described above under the direct and indirect impacts for habitats of concern. Selection of the Bakersfield Hybrid Alternative would cause fewer temporary impacts on black willow thickets and unsurveyed habitats that have the potential to support special-status plant communities and slightly more temporary impacts on one special-status plant community (valley foothill riparian) than would the corresponding segment of the BNSF Alternative (Appendix 3.7-B, Attachment 3). Riparian habitat along the Kern River Corridor receives additional protection under Chapter 19.73 of the Kern County ordinances.

Due to the large area of impact, including large areas of unsurveyed habitats that have the potential to support special-status plant communities, construction of the Bakersfield Hybrid Alternative may result in relatively high-intensity loss to special-status plant communities. Therefore, construction period impacts of the Bakersfield Hybrid Alternative would result in an effect of substantial intensity under NEPA and a significant impact under CEQA on special-status plant communities and their habitats.

Jurisdictional Waters

Wetlands and other waters in the footprint of the Bakersfield Hybrid Alternative include seasonal riverine (e.g., Kern River) and the associated riparian buffer (as discussed above under special-status plant communities) as well as seasonal wetlands, canals/ditches, and lacustrine features. However, no natural jurisdictional wetlands (e.g., seasonal wetlands) would be temporarily affected by the use of this alternative (Table 3.7-7; Table 3.7-8; Appendix 3.7-B, Attachments 4 and 5). Direct temporary impacts would occur during construction of the Bakersfield Hybrid Alternative, resulting in the temporary disturbance of seasonal riverine features (e.g., the Kern River) and man-made features, including canals/ditches and lacustrine features.

Both the Bakersfield Hybrid Alternative and the corresponding segment of the BNSF Alternative would be located in areas of urban Bakersfield that contain similar man-made and natural wetlands and other waters. The majority of the jurisdictional waters in the Bakersfield Hybrid Alternative and the corresponding segment of the BNSF Alternative are man-made and in poor ecological condition with the exception of the Kern River and the seasonal wetlands, which are in fair to good ecological condition (Table 3.7-8).

When compared with the corresponding segment of the BNSF Alternative, the Bakersfield Hybrid Alternative would marginally decrease the amount of temporary direct impacts on other waters (Table 3.7-7; Appendix 3.7-B, Attachment 4).

Neither the Bakersfield Hybrid Alternative nor the corresponding segment of the BNSF Alternative would have temporary direct impacts on wetland features (Table 3.7-7; Appendix 3.7-B, Attachment 4). Impacts on the Kern River would be similar regardless of the alternative selected, and as with the corresponding segment of the BNSF Alternative, a temporary construction area would be located adjacent to the Kern River.

Construction of the Bakersfield Hybrid Alternative would affect both man-made and natural jurisdiction waters and would result in relatively high-intensity loss to these features. Therefore,
construction period impacts of the Bakersfield Hybrid Alternative would result in an effect of substantial intensity under NEPA and a significant impact under CEQA on jurisdictional waters.

Conservation Areas

Recovery Plans
The Bakersfield Hybrid Alternative overlaps the *Recovery Plan for Upland Species of the San Joaquin Valley, California* (USFWS 1998). A portion of the Bakersfield Hybrid Alternative occurs in a satellite area identified in this recovery plan. Construction of the Bakersfield Hybrid Alternative would result in temporary disturbance of this recovery plan area (Appendix 3.7-B, Attachment 5).

Selection of the Bakersfield Hybrid Alternative would increase the amount of temporary disturbance to this recovery plan area when compared with the corresponding segment of the BNSF Alternative (Appendix 3.7-B, Attachment 5).

Due to the large area of impact, construction of the Bakersfield Hybrid Alternative would result in relatively high-intensity loss to recovery plan areas. Therefore, construction period impacts under the Bakersfield Hybrid Alternative would result in an effect of substantial intensity under NEPA and a significant impact under CEQA on recovery plans.

Allensworth Ecological Reserve
Neither the Bakersfield Hybrid Alternative nor its corresponding segment of the BNSF Alternative overlaps the Allensworth ER (Appendix 3.7-B, Attachment 5). Therefore, no temporary direct or indirect impacts on the Allensworth ER would occur as a result of construction of either of these alternatives. Construction of the Bakersfield Hybrid Alternative would result in no effect under NEPA, and in no impact under CEQA on the Allensworth ER.

Habitat Conservation Plans
The Bakersfield Hybrid Alternative overlaps the MBHCP. Construction of the Bakersfield Hybrid Alternative would result in temporary disturbance within the plan area of the MBHCP (Appendix 3.7-B, Attachment 5).

The Bakersfield Hybrid Alternative and the corresponding segment of the BNSF Alternative both overlap the plan area for the MBHCP. Neither alternative conflicts with the provisions of the MBHCP because proposed mitigation ratios are similar to the “adequate mitigation” ratios presented in the plan. Also, the Bakersfield Hybrid Alternative and the corresponding segment of the BNSF Alternative do not overlap with the Conceptual Focus Areas identified as potential preserve areas. Therefore, construction period impacts of the Bakersfield Hybrid Alternative would result in no effect under NEPA, and no impact under CEQA on habitat conservation plans.

Protected Trees
Trees that may be regulated are present in the Bakersfield Hybrid Alternative (Appendix 3.7-B, Attachment 6). Direct impacts would occur during construction of the Bakersfield Hybrid Alternative and would result in the disturbance of protected trees. Selection of the Bakersfield Hybrid Alternative would increase the number of trees removed due to temporary impacts; however, all of the trees were unidentified and may not qualify as protected trees. Protected tree removal and trimming as a result of construction of the Bakersfield Hybrid Alternative would be considerable and would result in relatively high-intensity loss of this resource. Therefore, construction period impacts of the Bakersfield Hybrid Alternative would result in an effect of substantial intensity under NEPA and a significant impact under CEQA.
Impact BIO#4 - Construction Effects on Wildlife Movement Corridors

As described in Section 3.7.4.6 and shown on Figure 3.7-4, several modeled wildlife movement corridors, also known as linkages, exist within the HST alternative construction footprints:

- Kings River linkage.
- St. John’s River–Cross Creek linkage.
- Tule River linkage.
- SR 43/SR 155 linkage.
- Deer Creek–Sand Ridge linkage.
- Poso Creek linkage.
- Kern River linkage.

This section evaluates direct and indirect impacts on wildlife movement corridors that would result from construction of each of the HST alternatives. For a more detailed discussion of potential impacts on these linkages, refer to Section 5.6 of the *Fresno to Bakersfield Section: Biological Resources and Wetlands Technical Report* (Authority and FRA 2012a).

Direct BIO#4 Impacts during Construction Period

Temporary impacts from placement of barriers within natural lands and known linkages during construction activities may affect the ability of special-status species and other free-ranging animals to move freely within the wildlife movement corridors (linkages). However, temporary disturbance areas are generally small and non-linear; therefore, wildlife should be able to move around these barriers. Project period impacts are permanent in nature and are discussed under Impact BIO#8.

Construction activities in the SR 43/SR 155, Deer Creek–Sand Ridge, Tule River, Kings River, St. John’s River–Cross Creek, Poso Creek, and Kern River linkages are not likely to impair the habitat linkages between existing habitat blocks. Impacts associated with construction activities in minor amounts of natural habitat, primarily concentrated near the Kern River corridor, may temporarily impede wildlife movement within that area.

Indirect BIO#4 Impacts during Construction Period

Construction of the project would result in concentrated heavy vehicle and equipment use within existing agricultural and urban development areas. Construction activities occurring at or in the vicinity of wildlife movement corridors (linkages) or natural lands may result in indirect disruption of wildlife movement through lighting, noise, motion, and startle effects. However, temporary disturbance areas are generally small and non-linear; therefore, wildlife should be able to move around these barriers.

BNSF Alternative

The BNSF Alternative passes through all of the identified linkages discussed above. However, in general, temporary construction activities are located within isolated, non-linear areas (small areas located adjacent to permanent footprints) and are largely outside of wildlife movement areas (i.e., outside of riparian areas and other natural or semi-natural communities). As such the BNSF Alternative is not expected to impede or disrupt wildlife movement.

Small amounts of natural habitat associated with the Kern River (Bakersfield) may be temporarily disturbed, which in turn may result in a slight change in wildlife movement from existing biological conditions.
Because construction period impacts are not expected to impede movement, construction of the BNSF Alternative would result in only a slight change from existing biological conditions and little to no regional effects. Therefore, construction of the BNSF Alternative would result in an effect if negligible intensity under NEPA on wildlife movement corridors during construction. The impact would be less than significant under CEQA.

Hanford West Bypass 1 and Hanford West Bypass 1 Modified Alternatives

The Hanford West Bypass 1 alternatives pass through the Kings River, SR 43/SR 155, and St. John’s River–Cross Creek linkages. However, the construction activities are located within isolated, non-linear areas of temporary impact, are largely outside of the wildlife movement areas, and are not expected to disrupt wildlife movement within these linkages.

Construction period impacts (i.e., temporary activities) associated with the Hanford West Bypass 1 alternatives would be similar to those of the corresponding segment of the BNSF Alternative; therefore, as described above in the section on the direct and indirect impacts for wildlife movement corridors, neither alternative should impede wildlife movement.

Construction period impacts of the Hanford West Bypass 1 alternatives would result in no effect under NEPA, and no impact under CEQA on wildlife movement corridors.

Hanford West Bypass 2 and Hanford West Bypass 2 Modified Alternatives

The Hanford West Bypass 2 alternatives pass through the Kings River, SR 43/SR 155, and St. John’s River–Cross Creek linkages; however, construction activities within isolated, non-linear areas of temporary impact are not expected to disrupt wildlife movement within these linkages. Construction period impacts (i.e., temporary activities) associated with either of the Hanford West Bypass 2 alternatives are largely outside of the wildlife movement areas and would be similar to those of the corresponding segment of the BNSF Alternative; therefore neither alternative should impede or disrupt wildlife movement.

Construction period impacts of the Hanford West Bypass 2 alternatives would result in no effect under NEPA, and no impact under CEQA on wildlife movement corridors.

Corcoran Elevated Alternative

The Corcoran Elevated Alternative passes through the SR 43/SR 155 and Tule River linkages; however, construction activities within isolated, non-linear areas of temporary impact are not expected to disrupt wildlife movement within these linkages. Construction period impacts (i.e., temporary activities) associated with the Corcoran Elevated Alternative would be similar to those of the corresponding segment of the BNSF Alternative; therefore neither alternative should impede or disrupt wildlife movement.

Construction period impacts of the Corcoran Elevated Alternative would result in no effect under NEPA, and no impact under CEQA on wildlife movement corridors.

Corcoran Bypass Alternative

The Corcoran Bypass Alternative passes through the SR 43/SR 155 and Tule River linkages; however, construction activities within isolated, non-linear areas of temporary impact are not expected to disrupt wildlife movement within these linkages. Construction period impacts (i.e., temporary activities) associated with the Corcoran Bypass Alternative would be similar to those of the corresponding segment of the BNSF Alternative; therefore, neither alternative should impede or disrupt wildlife movement.
Construction period impacts of the Corcoran Bypass Alternative would result in no effect under NEPA, and no impact under CEQA on wildlife movement corridors.

Allensworth Bypass Alternative

The Allensworth Bypass Alternative passes through the SR 43/SR 155 linkage; however, construction activities within isolated, non-linear areas of temporary impact are not expected to disrupt wildlife movement within this linkage. Construction period impacts (i.e., temporary activities) associated with the Allensworth Bypass Alternative would be similar to those of the corresponding segment of the BNSF Alternative; therefore, neither alternative should impede wildlife movement.

Construction period impacts of the Allensworth Bypass Alternative would result in no effect under NEPA, and no impact under CEQA on wildlife movement corridors.

Wasco-Shafter Bypass Alternative

The Wasco-Shafter Bypass Alternative does not overlap an identified wildlife movement corridor. Both the Wasco-Shafter Bypass Alternative and the corresponding BNSF Alternative segment would not affect identified wildlife movement corridors.

Construction period impacts of the Wasco-Shafter Bypass Alternative would result in no effect under NEPA, and no impact under CEQA on wildlife movement corridors.

Bakersfield South Alternative

The Bakersfield South Alternative passes through the Kern River linkage and has the potential to affect wildlife movement within this linkage, because construction activities will affect a minor amount of natural lands. With both alternatives, the Kern River linkage corridor would be temporarily blocked by fencing during construction activities, which may result in adverse effects on local wildlife movement.

The use of the Bakersfield South Alternative rather than the corresponding BNSF Alternative would not change the level or degree of impacts, because impacts on wildlife movement corridors would be similar.

Because construction period impacts are not expected to significantly impede movement, construction of the Bakersfield South Alternative would result in only a slight change from existing biological conditions and little to no regional effects. Therefore, construction period impacts of the Bakersfield South Alternative would result in an effect of negligible intensity under NEPA and a less than significant impact under CEQA on wildlife movement corridors.

Bakersfield Hybrid Alternative

The Bakersfield Hybrid Alternative passes through the Kern River linkage and has the potential to affect wildlife movement within this linkage because construction activities will affect a minor amount of natural lands. With both alternatives, the Kern River linkage corridor would be temporarily blocked by fencing during construction activities, which may result in adverse effects on local wildlife movement.

The use of the Bakersfield Hybrid Alternative rather than the corresponding segment of the BNSF Alternative would not change the level or degree of impacts, because impacts on wildlife movement corridors would be similar.

Because construction period impacts are not expected to significantly impede movement, construction of the Bakersfield Hybrid Alternative would result in only a slight change from
existing biological conditions and little to no regional effects. Therefore, construction period impacts of the Bakersfield Hybrid Alternative would result in an effect of negligible intensity under NEPA and a less than significant impact under CEQA on wildlife movement corridors.

Project Impacts - Common Biological Resource Impacts

Sensitive biological resources occurring adjacent to and within the construction footprint are expected to incur direct and indirect impacts from the project. These direct and indirect impacts would be common through all HST alternatives. The following sections discuss how the HST alternatives would affect these biological resources.

Project impacts on natural lands could result in permanent direct and indirect effects on a number of biological resources, including special-status plant and wildlife species, habitats of concern (encompasses jurisdictional waters), and wildlife movement corridors (Table 3.7-9). Urban and agricultural lands affected by project activities are not expected to provide conditions that support special-status plant species or special-status plant communities, to provide preferred habitat for special-status wildlife species, to support high-quality jurisdictional waters, or to facilitate the movement or migration of wildlife species. However, these areas often contain degraded or marginal habitats for a number of special-status wildlife species; and in some instances support jurisdictional waters (specifically lacustrine), and are used for movement and migration by a number of wildlife species. Direct, and in some instances indirect, impacts associated with urban, agricultural, and natural lands are described for the various biological resources. For a more complete description of the impacts on agricultural lands, see Section 3.14, Agricultural Lands.
Table 3.7-9
Communities Potentially Affected by the Alternative Alignments (acres): Project Impacts^a (Permanent Impacts)

<table>
<thead>
<tr>
<th>Community Type</th>
<th>BNSF West Bypass 1</th>
<th>Hanford West Bypass 1 Modified</th>
<th>Hanford West Bypass 2</th>
<th>Hanford West Bypass 2 Modified</th>
<th>Corcoran Elevated</th>
<th>Corcoran Bypass</th>
<th>Allensworth Bypass</th>
<th>Wasco-Shafter Bypass</th>
<th>Bakersfield South</th>
<th>Bakersfield Hybrid</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Impact Acreage</td>
<td></td>
<td></td>
<td>Impact Acreage / Difference Compared to Corresponding BNSF Area<sup>a</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barren</td>
<td>50.46</td>
<td>1.94 / -0.41</td>
<td>1.72 / -0.64</td>
<td>7.80 / +5.44</td>
<td>9.06 / +6.71</td>
<td>26.15 / +18.88</td>
<td>8.19 / +0.93</td>
<td>—</td>
<td>—</td>
<td>14.83 / +8.19</td>
</tr>
<tr>
<td>Urban</td>
<td>1475.99</td>
<td>216.49 / -3.98</td>
<td>214.49 / -5.99</td>
<td>213.80 / -6.67</td>
<td>217.60 / -2.88</td>
<td>157.38 / +16.06</td>
<td>136.28 / -5.04</td>
<td>34.8 / -41.14</td>
<td>156.45 / -178.11</td>
<td>245.48 / -40.56</td>
</tr>
<tr>
<td>Agricultural Lands</td>
<td>2721.08</td>
<td>570.35 / -283.4</td>
<td>726.13 / -227.63</td>
<td>365.90 / -287.87</td>
<td>765.42 / 188.34</td>
<td>151.65 / +85.83</td>
<td>204.69 / 32.79</td>
<td>399.39 / +35.85</td>
<td>549.80 / -63.09</td>
<td>—</td>
</tr>
<tr>
<td>Annual Grassland</td>
<td>278.37</td>
<td>35.82 / +18.04</td>
<td>42.90 / +25.13</td>
<td>43.2 / +25.42</td>
<td>60.78 / +43.01</td>
<td>75.73 / +49.27</td>
<td>102.96 / +76.50</td>
<td>109.93 / -37.64</td>
<td>27.68 / -3.44</td>
<td>5.62 / +1.07</td>
</tr>
<tr>
<td>Valley Foothill Riparian</td>
<td>2.90</td>
<td>1.41 / +0.35</td>
<td>1.90 / +0.84</td>
<td>1.41 / +0.35</td>
<td>1.90 / +0.84</td>
<td>0.47 / -0.04</td>
<td>0.50 / 0.00</td>
<td>0.47 / -0.66</td>
<td>—</td>
<td>0.70 / +0.49</td>
</tr>
<tr>
<td>Alkaline Desert Scrub</td>
<td>54.22</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>7.68 / -33.65</td>
<td>—</td>
<td>11.70 / -1.19</td>
</tr>
<tr>
<td>Pasture</td>
<td>41.29</td>
<td>9.99 / -5.08</td>
<td>11.29 / -3.78</td>
<td>4.55 / -10.53</td>
<td>9.28 / -5.80</td>
<td>— / -0.90</td>
<td>2.06 / +1.16</td>
<td>0.07 / -4.04</td>
<td>—</td>
<td>1.64 / +0.49</td>
</tr>
<tr>
<td>Valley Oak Woodland</td>
<td>1.89 / +1.89</td>
<td>1.89 / +1.89</td>
<td>1.89 / +1.89</td>
<td>1.89 / +1.89</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Fresh Emergent Wetland<sup>d</sup></td>
<td>0.01—</td>
<td>0 / -0.01</td>
<td>0 / -0.01</td>
<td>0 / -0.01</td>
<td>0 / 0</td>
</tr>
<tr>
<td>Riverine<sup>e</sup></td>
<td>70.95</td>
<td>17.57 / +4.29</td>
<td>18.26 / +4.97</td>
<td>16.65 / +3.36</td>
<td>16.08 / +2.88</td>
<td>19.31 / +3.64</td>
<td>9.11 / -6.56</td>
<td>11.67 / +0.46</td>
<td>2.99 / -0.08</td>
<td>7.69 / +2.66</td>
</tr>
<tr>
<td>Lacustrine<sup>f</sup></td>
<td>51.85</td>
<td>0.2 / -4.36</td>
<td>19.93 / +15.36</td>
<td>0.73 / -3.83</td>
<td>4.88 / +0.32</td>
<td>9.07 / -0.5</td>
<td>5.22 / -4.35</td>
<td>26.79 / 0</td>
<td>4.93 / +0.06</td>
<td>3.77 / +0.53</td>
</tr>
</tbody>
</table>

Notes:
^a All impacts were calculated based on 15% engineering design construction footprint.
^b See Appendix 3.7-B, Attachments 1, 2, and 3 for more detailed comparisons. The “Difference Compared to Corresponding BNSF Area” represents the difference in impact acreages between an alternative alignment and its corresponding segment in the BNSF Alternative: positive (+) differences indicate that the alternative alignment results in greater impact acres than its corresponding segment in the BNSF Alternative; negative (-) differences indicate that the alternative alignment results in fewer impact acres than its corresponding segment in the BNSF Alternative.
^c — = No impact or not applicable
^d Fresh Emergent Wetland is equivalent to the jurisdictional waters feature emergent wetland.
^e Riverine includes two jurisdictional waters feature types: seasonal riverine and canals/ditches.
^f Lacustrine is equivalent to the jurisdictional waters lacustrine.
Impact BIO#5 – Project Effects on Special-Status Plant Species

Direct BIO#5 Project Impacts

Direct impacts on special-status plant species and native plant species would result from the permanent removal of vegetation from within the HST System footprint. Disturbance of individuals, populations, or suitable potential habitat for these special-status plant species could occur during ongoing operation and maintenance activities (e.g., routine inspection and maintenance of the HST right-of-way).

Direct impacts include the permanent removal of special-status plant communities and land cover types that provide habitat for a number of special-status plants. Based on the habitat requirements of special-status plants, an estimated 55 species have a potential to occur within the land to be occupied by the HST track and facilities. Some areas within the study areas and the corresponding limits of disturbance were not made available for pedestrian field surveys. Therefore, inaccessible areas with potentially suitable habitat present are considered occupied by special-status plant species. For these reasons, all the HST alternatives are assumed to have various amounts of suitable habitat for special-status species. Depending on the amount of affected habitat, the projected adverse effect may be considered moderate to substantial with respect to NEPA and significant under CEQA.

Indirect BIO#5 Project Impacts

Indirect impacts on special-status plant species and native plant species are anticipated to include:

- Increased erosion, sedimentation, siltation from runoff, and hydrology that could affect adjacent aquatic habitats.
- Wind erosion effects (including from unvegetated rights-of-way and passing high-speed trains).
- Increased risk of fire in adjacent open spaces from increased human activity.
- Habitat degradation through changes in habitat heterogeneity, fragmentation, and the introduction of nonnative invasive plant species (could significantly disrupt the habitat and result in the decreased viability of special-status plant populations).
- Fragmentation from the construction of permanent features, especially linear features, including track and access roads that bisected natural habitats.
- Introduction of noxious plant species (nonnative, detrimental species) from construction equipment and vehicles, increasing competition for resources (i.e., sun, water) and decreasing success in blooming, flowering, pollinating, seeding, and setting seed (annuals).
- Indirect project impacts would be less during the operation of the HST as project design features would be in place to direct water flow.

BNSF Alternative

Two special-status plant species, heartscale and little mouse tail, are known to occur in the BNSF Alternative. Also, special-status plant species may occur in unsurveyed habitats that have the potential to support special-status plant species within the BNSF Alternative (Appendix 3.7-B, Attachment 1). The above-mentioned direct and indirect impacts would potentially occur, resulting in the permanent loss or damage to known occurrences of heartscale and little mouse tail, and to other areas that have potential to support special-status plant species (Appendix 3.7-
B, Attachment 1). Due to the impacts on known special-status species and unsurveyed habitats that have the potential to support special-status plant species, the BNSF Alternative would result in relatively high-intensity loss to these resources. Project impacts of the BNSF Alternative would result in an effect of substantial intensity under NEPA from impacts on special-status plant species. The impact would be significant under CEQA.

Hanford West Bypass 1 and Hanford West Bypass 1 Modified Alternatives

No special-status plant species were identified in the Hanford West Bypass 1 alternatives, although unsurveyed habitats that have the potential to support special-status plant species do occur (Appendix 3.7-B, Attachment 1). Habitats in the Hanford West Bypass 1 alternatives, including these unsurveyed areas, are mostly urban and agricultural; however, some natural areas are present (Table 3.7-9). If special-status plant species are present in suitable unsurveyed habitats, project impacts of the Hanford West Bypass 1 alternatives could directly and indirectly result in the permanent loss or damage of special-status plant species.

Neither the Hanford West Bypass 1 alternatives nor the corresponding segment of the BNSF Alternative would result in project impacts on observed special-status plant species. However, the Hanford West Bypass 1 alternatives would result in project impacts on a larger area of unsurveyed habitats that have a low potential to support special-status plant species than its corresponding segment of the BNSF Alternative (Appendix 3.7-B, Attachment 1). The Modified Alternative would result in slightly larger impacts on these habitats.

Although no special-status plant species were observed in the Hanford West Bypass 1 alternatives, measurable adverse loss to special-status plant species may occur due to the loss of habitat that has potential to support special-status plant species. Therefore, the project impacts of the Hanford West Bypass 1 Alternative would result in an effect of moderate intensity under NEPA and a significant impact under CEQA on special-status plant species.

Hanford West Bypass 2 and Hanford West Bypass 2 Modified Alternatives

No special-status plant species were identified in the footprint of the Hanford West Bypass 2 alternatives, although unsurveyed habitats with the potential to support special-status plant species do occur (Appendix 3.7-B, Attachment 1). If special-status plant species are present in suitable unsurveyed habitats, project impacts of the Hanford West Bypass 2 alternatives could directly and indirectly result in the permanent loss or damage of special-status plant species.

Neither the Hanford West Bypass 2 alternatives nor the corresponding segment of the BNSF Alternative would result in project impacts on special-status plant species. However, the Hanford West Bypass 2 alternatives would result in project impacts on a larger area of habitats that have a low potential to support special-status plant species than the corresponding segment of the BNSF Alternative (Appendix 3.7-B, Attachment 1). The Hanford West Bypass 2 Modified Alternative would result in impacts in a slightly smaller area of these habitats than the Hanford West Bypass 2 Alternative.

Although no special-status plant species were observed in the Hanford West Bypass 2 alternatives, measurable adverse loss to special-status plant species may occur due to the loss of habitat that has potential to support special-status plant species. Therefore, the project impacts of the Hanford West Bypass 2 Alternative would result in an effect of moderate intensity under NEPA and a significant impact under CEQA on special-status plant species.

Corcoran Elevated Alternative

No special-status plant species were identified in the Corcoran Elevated Alternative, but unsurveyed habitats with the potential to support special-status plant species are present
Habitats in the Corcoran Elevated Alternative, including the unsurveyed habitats, are mainly in urban and agricultural lands (Table 3.7-9), which have no to low potential for supporting special-status plant species.

Both the Corcoran Elevated Alternative and the corresponding BNSF Alternative would have permanent impacts on unsurveyed habitats that have a low potential to support special-status plant species in the vicinity of Cross Creek. The corresponding segment of the BNSF Alternative would result in impacts on a substantially smaller area of unsurveyed habitats that have the potential to support special-status plant species than the Corcoran Elevated Alternative (Appendix 3.7-B, Attachment 1). However, selection of the Corcoran Elevated Alternative would reduce indirect impacts by maintaining porosity and habitat connectivity underneath the elevated section. If special-status plant species are present in unsurveyed habitats, project impacts of the Corcoran Elevated Alternative could directly and indirectly result in permanent impacts on these species.

Although no special-status plant species were observed in the Corcoran Elevated Alternative, measurable adverse loss to special-status plant species may occur due to the loss of habitat that has limited potential to support special-status plant species. Therefore, the project impacts of the Corcoran Elevated Alternative would result in an effect of moderate intensity under NEPA and a significant impact under CEQA on special-status plant species.

Corcoran Bypass Alternative

One special-status plant species, heartscale, was identified in the Corcoran Bypass Alternative. Unsurveyed habitats that have the potential to support special-status plant species are also present (Appendix 3.7-B, Attachment 1). Project impacts on heartscale are very small (less than 0.01 acre) and would directly and indirectly result in the permanent loss or damage of the population. If special-status plant species are present in potential suitable habitats that have not been surveyed, project impacts of the Corcoran Bypass Alternative could directly and indirectly result in the permanent loss or damage of special-status plant species.

Both the Corcoran Bypass Alternative and the corresponding segment of the BNSF Alternative would occur in the natural lands in the vicinity of the Tulare Lakebed Mitigation Site. However, the corresponding segment of the BNSF Alternative would occur (in some instances) adjacent to SR 43 and the BNSF right-of-way and in the urban areas of Corcoran, while the Corcoran Bypass Alternative would affect more annual grasslands, which are more likely to support special-status plant species. However, both the project impacts and the natural lands are immediately adjacent to existing infrastructure (e.g., roads, canals, ditches). As such, the potential for special-status plant species to occur is limited.

The Corcoran Bypass Alternative would result in a slight increase in impacts on the known population of heartscale, but given the extent of the project period impacts, this slight increase in impacts would be negligible. The Corcoran Bypass Alternative would substantially increase permanent impacts on unsurveyed habitats that have the potential to support special-status plant species compared with the corresponding segment of the BNSF Alternative (Appendix 3.7-B, Attachment 1). Indirect impacts on species and on unsurveyed natural habitats with potential to support special-status plant species are greater in the Corcoran Bypass Alternative, compared with the corresponding BNSF Alternative segment, because of the potential for greater habitat fragmentation resulting from construction of the Corcoran Bypass Alternative.

Although the known impacts on heartscale are minimal (approximately 0.004 acre), a measurable adverse loss to special-status plant species may occur due to the loss of habitat that has potential to support special-status plant species. Because the project period impacts would occur adjacent to existing developed lands, the potential for the special-status plant species to occur is...
limited. Therefore, the project impacts of the Corcoran Bypass Alternative would result in an effect of moderate intensity under NEPA and a significant impact under CEQA on special-status plant species.

Allensworth Bypass Alternative

No special-status plant species were identified in the Allensworth Bypass Alternative, although unsurveyed habitats that have the potential to support special-status plant species do occur (Appendix 3.7-B, Attachment 1). If special-status plant species are present in suitable unsurveyed habitats, project impacts of the Allensworth Bypass Alternative could directly and indirectly result in the permanent loss or damage of special-status plant species.

Selection of the Allensworth Bypass Alternative would decrease permanent impacts on known occurrences of heartscale and little mouse tail when compared with the corresponding segment of the BNSF Alternative (Appendix 3.7-B, Attachment 1). Also, the Allensworth Bypass Alternative would result in a smaller area of permanent direct impacts on unsurveyed habitats that have the potential to support special-status plant species. Indirect impacts on these species are greater in the Allensworth Bypass Alternative compared with the corresponding segment of the BNSF Alternative, because of habitat fragmentation resulting from construction of a new transportation alignment.

Both alternatives would occur in the natural lands in the vicinity of the Allensworth ER. However, the corresponding part of the BNSF Alternative would occur adjacent to SR 43, the BNSF Railway right-of-way, Allensworth ER, and the Allensworth SHP, while the Allensworth Bypass Alternative would affect agricultural lands and natural areas. Both the Allensworth Bypass Alternative and the corresponding section of the BNSF Alternative could provide habitat for special-status plant species.

Although no special-status plant species were observed in the Allensworth Bypass Alternative, relatively high-intensity loss to special-status plant species would occur due to the loss of habitat that has potential to support special-status plant species. Therefore, the project impacts of the Allensworth Bypass Alternative would result in an effect of substantial intensity under NEPA and a significant impact under CEQA on special-status plant species.

Wasco-Shafter Bypass Alternative

There are no known occurrences of special-status plants in the Wasco-Shafter Bypass Alternative (Appendix 3.7-B, Attachment 1). Unsurveyed habitats that could support special-status plant species are limited in the Wasco-Shafter Bypass Alternative (and the corresponding segment of the BNSF Alternative) by a number of factors, including the conversion of natural lands to agricultural land uses. While suitable habitat is limited, special-status plant species have up to a moderate potential of being present in suitable habitats. Direct and indirect project impacts are anticipated to occur as a result of the Wasco-Shafter Bypass Alternative, resulting in the potential permanent loss or damage of special-status plant species.

The Wasco-Shafter Bypass Alternative would have more permanent impacts on unsurveyed habitats that potentially have special-status plant species than the corresponding segment of the BNSF Alternative (Appendix 3.7-B, Attachment 1).

Both the Wasco-Shafter Bypass Alternative and the corresponding segment of the BNSF Alternative pass through predominantly agricultural areas and bisect Poso Creek at nearly identical locations. Because the habitats located in the footprints of both alternatives would be largely disturbed, the potential for special-status plant species to occur is low. Selection of the Wasco-Shafter Bypass Alternative would affect unsurveyed potential habitat for special-status
plant species; however, most of this potential habitat is low-quality, fragmented, and small in size.

Although no special-status plant species were observed in the Wasco-Shafter Bypass Alternative, measurable adverse loss to special-status plant species would occur due the loss of habitat that has limited potential to support special-status plant species. Therefore, the project impacts of the Wasco-Shafter Bypass Alternative would result in an effect of moderate intensity under NEPA and a significant impact under CEQA on special-status plant species.

Bakersfield South Alternative

There are no known occurrences of special-status plants in the Bakersfield South Alternative; however, unsurveyed potential habitat is present (Appendix 3.7-B, Attachment 1). Suitable habitat for most special-status plant species is limited in the Bakersfield South Alternative (as well as in its corresponding segment of the BNSF Alternative) by a number of factors, including fragmentation and disturbance from development (urbanization) that encompasses residential, commercial, and industrial purposes. While suitable habitat is limited, special-status plant species have up to a moderate potential of being present in unsurveyed suitable habitats. Direct and indirect project impacts are anticipated to occur as a result of the Bakersfield South Alternative, resulting in the permanent loss or damage of special-status plant species.

The Bakersfield South Alternative would result in slightly more permanent impacts on unsurveyed habitats that have the potential to support special-status plant species than the corresponding BNSF Alternative (Appendix 3.7-B, Attachment 1).

No special-status plant species were identified; species have limited potential to occur in areas where surveys were not conducted, and unsurveyed potential habitat is limited and appears to have been previously disturbed, degraded, or otherwise fragmented. For these reasons, the Bakersfield South Alternative would result in only a slight change from existing biological conditions, with few if any regional effects. Therefore, the project impacts of the Bakersfield South Alternative would result in an effect of moderate intensity under NEPA and a less than significant impact under CEQA on special-status plant species.

Bakersfield Hybrid Alternative

There are no known occurrences of special-status plants in the Bakersfield Hybrid Alternative; however, unsurveyed potential habitat is present (Appendix 3.7-B, Attachment 1). Suitable habitat for most special-status plant species is limited in the Bakersfield Hybrid Alternative (as well as in its corresponding segment of the BNSF Alternative) by a number of factors, including fragmentation and disturbance from development (urbanization) for residential, commercial, and industrial purposes. While suitable habitat is limited, special-status plant species have a moderate potential of being present in unsurveyed suitable habitats. Direct and indirect project impacts are anticipated to occur as a result of the Bakersfield Hybrid Alternative, resulting in the permanent loss or damage of special-status plant species.

The Bakersfield Hybrid Alternative would result in fewer permanent impacts on unsurveyed habitats that have the potential to support special-status plant species than the corresponding BNSF Alternative (Appendix 3.7-B, Attachment 1).

No special-status plant species were identified; species have limited potential to occur in areas where surveys were not conducted, and unsurveyed potential habitat is limited and has been previously disturbed, degraded, or otherwise fragmented. For these reasons, the Bakersfield Hybrid Alternative would result in only a slight change from existing biological conditions, with few if any regional effects. Therefore, the project impacts of the Bakersfield Hybrid Alternative
would result in an effect of moderate intensity under NEPA and a less than significant impact under CEQA on special-status plant species.

Heavy Maintenance Facility Alternatives

Fresno Works–Fresno HMF Site: There are no known occurrences of special-status plant species in the Fresno Works-Fresno HMF. The Fresno Works-Fresno HMF would result in permanent impacts on unsurveyed habitats that have the potential to support special-status plant species. Habitats in the footprint of the Fresno Works-Fresno HMF Site are all influenced by human activity (Table 3.7-10); therefore these habitats have a low to moderate potential of supporting these species. Direct and indirect impacts on special-status plants could occur, resulting in the permanent loss or damage to special-status plants species, as discussed above under the direct and indirect impact for species-status plant species. Because no special-status plant species are present and unsurveyed potential habitat is limited, the Fresno Works-Fresno HMF would result in only a slight change from existing biological conditions. Therefore, the project impacts of the Fresno Works–Fresno HMF would result in an effect of negligible intensity under NEPA, on special-status plant species. The impact would be less than significant under CEQA.

Kings County–Hanford HMF Site: There are no known occurrences of special-status plant species in the Kings County-Hanford HMF. This HMF Alternative would result in permanent impacts on unsurveyed habitats that have the potential to support special-status plant species (39.02 acres); however, these habitats are located mostly in urban and agricultural lands (Table 3.7-10) and have a low to moderate potential of supporting these species (Appendix 3.7-A, Attachment 1). Direct and indirect impacts on special-status plants could potentially occur, resulting in the permanent loss or damage to special-status plants species. Because no special-status plant species are present and unsurveyed potential habitat is limited, the Kings County-Hanford HMF would result in only a slight change from existing biological conditions and little to no regional effects. Therefore, the project impacts of the Kings County–Hanford HMF would result in an effect of negligible intensity under NEPA, on special-status plant species. The impact would be less than significant under CEQA.

Kern Council of Governments–Wasco HMF Site: There are no known occurrences of special-status plant species in the Kern Council of Governments–Wasco HMF. No habitats capable of supporting special-status plant species are present within or directly adjacent to the Kern Council of Governments –Wasco HMF. Therefore, the project impacts of the Kern Council of Governments–Wasco HMF would result in no effect under NEPA, and no impact would occur under CEQA on special-status plant species.

Kern Council of Governments–Shafter East HMF Site: There are no known occurrences of special-status plant species in the Kern Council of Governments–Shafter East HMF Site. The Shafter East HMF site would result in permanent impacts on a small amount of unsurveyed habitats that have the potential to support special-status plant species (0.10 acre). Direct and indirect impacts on special-status plants could potentially occur, resulting in the permanent loss or damage to special-status plants species. However, special-status plant species have a low potential to occur in the Kern Council of Governments–Shafter HMF because the small fragments of habitat within the construction footprint are unlikely to support special-status plant species. Because no special-status plant species are present and unsurveyed potential habitat is limited, the Kern Council of Governments–Shafter East HMF would result in only a slight change from existing biological conditions and little to no regional effects. Therefore, the project impacts of the Kern Council of Governments–Shafter HMF would result in an effect of negligible intensity on special-status plant species under NEPA. The impact would be less than significant under CEQA.

Kern Council of Governments–Shafter West HMF Site: There are no known occurrences of special-status plant species in the Kern Council of Governments –Shafter West HMF Site. No
unsurveyed habitats capable of supporting special-status plant species are present within or directly adjacent to the Shafter West HMF site. Therefore, the project impacts of the Shafter West HMF site would result in no effect under NEPA, and no impact would occur under CEQA on special-status plant species.

Table 3.7-10
Communities Potentially Affected by the Heavy Maintenance Facility Alternatives (acres): Project (Permanent Impacts)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Terrestrial Communities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barren</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Urban</td>
<td>194.85</td>
<td>28.67</td>
<td>18.03</td>
<td>10.22</td>
<td>27.85</td>
<td></td>
</tr>
<tr>
<td>Agricultural Lands</td>
<td>316.36</td>
<td>454.82</td>
<td>396.81</td>
<td>483.26</td>
<td>448.44</td>
<td></td>
</tr>
<tr>
<td>Annual Grassland</td>
<td>—</td>
<td>—</td>
<td>0.04</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Valley Foothill Riparian</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Alkali Desert Scrub</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Pasture</td>
<td>68.28</td>
<td>26.40</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Aquatic Communities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fresh Emergent Wetland</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Riverine</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Lacustrine</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

— = No impact or not applicable

All impacts were calculated based on 15% engineering design construction footprint.

* Fresh Emergent Wetland is equivalent to the jurisdictional waters feature emergent wetland.

* Riverine includes two jurisdictional waters feature types: seasonal riverine and canals/ditches.

* Lacustrine is equivalent to the jurisdictional waters lacustrine.

Station Alternatives

Kings/Tulare Regional Station–West Alternative: There are no known occurrences of special-status plant species in the footprint of the Kings/Tulare Regional Station–West Alternative. This station alternative would result in permanent impacts on unsurveyed habitats that have the potential to support special-status plant species (18.59 acres). However, habitats within this alternative, including unsurveyed habitats, are mostly urban and agricultural lands (Table 3.7-11), which have a low to moderate potential of supporting these species. Direct and indirect impacts on special-status plants could potentially occur, resulting in the permanent loss or damage to special-status plants species. Because no special-status plant species are present and unsurveyed potential habitat is limited, the Kings/Tulare Regional Station–West Alternative would result in only a slight change from existing biological conditions and little to no regional effects. Therefore, the project impacts of the Kings/Tulare Regional Station–West Alternative would result
in an effect of negligible intensity under NEPA, on special-status plant species. The impact would be less than significant under CEQA.

Table 3.7-11
Terrestrial Communities Potentially Affected by the Station Alternatives (acres): Project Operation (Permanent Impacts)

<table>
<thead>
<tr>
<th>Community Type</th>
<th>Fresno Station–Mariposa</th>
<th>Kings/ Tulare Regional Station–East</th>
<th>Kings/ Tulare Regional Station–West</th>
<th>Bakersfield Station–North</th>
<th>Bakersfield Station–South</th>
<th>Bakersfield Station–Hybrid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barren</td>
<td>0.15</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Urban</td>
<td>17.23</td>
<td>—</td>
<td>4.79</td>
<td>21.14</td>
<td>23.86</td>
<td>29.96</td>
</tr>
<tr>
<td>Agricultural Lands</td>
<td>—</td>
<td>21.87</td>
<td>24.84</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Annual Grassland</td>
<td>0.40</td>
<td>—</td>
<td>18.59</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Valley Foothill Riparian</td>
<td>—</td>
<td>—</td>
<td><0.01</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Alkali Desert Scrub</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Pasture</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Fresh Emergent Wetlanda</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Riverineb</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Lacustrinec</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Notes:
— = No impact or not applicable
All impacts were calculated based on 15% engineering design construction footprint.

Fresno Station–Mariposa, Kings/Tulare Regional Station–East, Bakersfield Station–North, Bakersfield Station–South, and Bakersfield Station—Hybrid Alternatives: There are no known occurrences of special-status plants species in these proposed station alternatives, and no habitats capable of supporting special-status plant species are present in the footprint of these station alternatives. Therefore, the project impacts of these station alternatives would result in no effect under NEPA, and no impact would occur under CEQA on special-status plant species.

Impact B1O#6 – Project Effects on Special-Status Wildlife Species

The following section discusses impacts, direct and indirect, resulting from permanent project facilities and their operation on special-status wildlife species and native fauna. Based on their
specific habitat requirements, several special-status invertebrates and vertebrates are likely to occur in the construction footprint.

The majority of special-status wildlife species observed were in relatively undisturbed portions of the Habitat Study Area in areas that were mapped as alkali desert scrub, annual grassland, and valley foothill riparian communities. Special-status species like the western burrowing owl and Swainson’s hawk were also observed in the vicinity of barren, urban, or agricultural areas; species like the western spadefoot toad were found breeding in seasonal, man-made wetlands, or roadside ditches.

Direct Bio#6 Project Impacts

Direct impacts relative to all special-status wildlife species include the permanent conversion of occupied habitat to project infrastructure and the loss of individual special-status wildlife species within the limits of disturbance.

Invertebrates: Direct impacts would include mortality from incidental trampling or crushing caused by increased human activity in work areas and exposure to accidental spills, including contaminants/pollutants. Direct impacts would also include the permanent conversion of occupied habitat to project infrastructure or changes to micro/local hydrology. Valley elderberry longhorn beetles would be directly affected through the damage or removal of elderberry host plants.

Amphibians and Reptiles: Train operation and maintenance activities would be limited to activities in the fenced right-of-way or to the raised structure. However, since security fencing would not likely prohibit or deter most reptile and amphibian species from accessing the right-of-way, the occasional special-status amphibian and reptile species could enter the right-of-way, which would increase the likelihood of a direct strike resulting from train operation or related maintenance activities. Such direct strikes could lead to injury or mortality of the species. However, short-term disturbances associated with vibration and noise levels from the operation of the train would likely deter wildlife species from entering the right-of-way.

Direct impacts from the project may include some similar impacts on invertebrates, such as incidental trampling or crushing, exposure to accidental spills including contaminants/pollutants, changes in micro/local hydrology, and displacement from the permanent conversion of occupied habitat. In addition, the fragmentation of the habitats and landscapes resulting from the construction of the Fresno to Bakersfield Section may interfere with the daily and seasonal movement and dispersal of the special-status amphibian and reptile species.

Fish: Direct impacts during operation could include exposure to contaminants/pollutants from accidental spills and increased sedimentation from erosion. Direct impacts from the project would also include the permanent conversion of potential habitat if project infrastructure is installed in river channels.

Birds (includes all migratory birds covered under MBTA): Thirty-two special-status bird species have been identified as having a low, moderate, or high potential of occurring in at least one HST alternative (Appendix 3.7-A, Attachment 2). Burrowing owls and other raptors extensively use agricultural lands, annual grasslands, valley foothill riparian (except burrowing owl), alkali desert scrub, irrigated hay field, and pasture land cover types.

Project impacts (e.g., mowing, weed control, and driving off-road) would result in the removal or disturbance of areas that provide potential nesting habitat for a diverse population of birds. Operations and maintenance activities conducted in areas of nesting habitat during the breeding season (generally between February 1 and September 1) could disturb nesting birds. This disturbance could cause nest abandonment and subsequent loss of eggs or developing young at active nests in or near the area of activity.
Project impacts (e.g., operation of the HST project at-grade or on an elevated structure) could result in injury or mortality from bird strikes or bird interactions with fencing and the electrical systems, as well as by permanent disturbance or temporary displacement from noise, vibration, wind, or visual stimuli. Human presence may accelerate local shifts in populations as could additional pressures on the landscape from colonization by nonnative plant species.

Burrowing Owls: Direct impacts on burrowing owls as a result of project infrastructure may include the permanent conversion of occupied habitat and local nest/burrow abandonment. Operations may increase noise levels and human presence may accelerate local shifts in populations and any additional pressures on the landscape from colonization by nonnative plant species.

Raptors: Direct impacts on raptors could include disruption of breeding activity from increased noise, mortality from HST strikes and human presence associated with HST operations, and the loss of habitat as a result of tree-clearing. Direct impacts on potential raptor foraging habitat include the permanent conversion of habitat as a result of site preparation activities.

Mammals: Direct impacts from project facilities would be primarily related to habitat conversion. Burrowing, denning and foraging habitat may be lost through ground disturbance and/or habitat degradation or land conversion from natural and bare-earth habitats to developed, hardscaped land uses. In addition, increased noise levels and human presence may accelerate local shifts in populations. In addition to the loss of habitat, some free-ranging mammals may avoid the area and be funneled along the HST corridor until locating a dispersion corridor. Project components like security fencing and Environmentally Sensitive Area fencing could result in injury or mortality if mammals become trapped by predators (e.g., coyotes, domestic/wild dogs) while traveling parallel to fence lines, which could lead to an increase in mammal predation along the length of the HST corridor.

Native fauna: Direct impacts for native fauna (e.g., fish, mollusks, crustaceans, amphibians, birds, mammals, reptiles, and insects) are similar to those impacts described above for special-status wildlife species.

Indirect BIO#6 Project Impacts

Invertebrates: Any change in local hydrology and vernal pools could cause a change in habitat conditions for vernal pool branchiopods. Indirect impacts may result from grading and stockpiling soils upslope of the pools, leading to sediment transfer into the water column. Depending on drainage Best Management Practices (BMPs), some changes to local hydrology could cause mobilization of otherwise standing water, scour, and changes to the period of inundation of vernal pools. Chemical spills from fuel, transmission fluid, lubricating oil, and motor oil leaks could contaminate the water column, resulting in habitat degradation or reduced reproductive success of special-status vernal pool branchiopods. Removal of young elderberry shrubs could reduce the long-term habitat of the valley elderberry longhorn beetle by inhibiting recruitment of young elderberry shrubs into the canopy.

Operational maintenance requires vegetation control through a variety of methods, including the application of Caltrans-approved herbicides. Pesticide application would be applied in accordance with all requirements of the California Department of Pesticide Regulation and County Agricultural Commissioners by certified pesticide applicators. The use of herbicides and pesticides could also contribute to chemical runoff and pollution of adjacent suitable habitats. However, maintenance activities that have potential impacts on special-status wildlife species are limited to the at-grade portion of the project footprint.

Amphibians: Impacts on amphibians would be dependent on the effectiveness of BMPs implemented in potentially affected drainages to mitigate changes to water velocity and periods
of inundation in nearby habitats. Chemical spills from fuel, transmission fluid, lubricating oil, and motor oil leaks have the potential to contaminate the water column, resulting in mortality, habitat degradation, or reduced reproductive success. Indirectly, project components such as security fencing, electrical infrastructure, and elevated structures could attract predators like raptors by providing artificial perch sites in the landscape.

Reptiles: Indirect impacts on reptiles include changes in the local landscape from invasive species as well as aquatic and terrestrial spills of fuel, transmission fluid, lubricating oil, and motor oil leaks. Indirectly, project components such as security fencing, electrical infrastructure, and elevated structures could attract predators like raptors by providing artificial perch sites in the landscape.

Fish: Indirect impacts on water quality would be similar to those discussed for the invertebrates. Depending on drainage BMPs, some changes to local hydrology could cause scour and changes to local hydrologic profiles. Chemical spills from fuel, transmission fluid, lubricating oil, and motor oil leaks could also contaminate water, resulting in mortality, habitat degradation, or reduced reproductive success of special-status fish. Project components such as electrical infrastructure, fencing, and elevated structures could attract predators like raptors by providing artificial perch sites in the landscape, all of which could lead to an increase in predation on special-status fish species.

Birds: Indirect impacts could occur from work activities that disrupt nesting birds, potentially leading to nest failure or abandonment. Indirect impacts may include avoidance behavior by some species in response to increased noise, lighting, and startle and motion disturbances during HST operation and maintenance activities. Fragmentation of the landscape resulting from Fresno to Bakersfield Section components could interfere with special-status bird daily or seasonal movement, foraging, and dispersal.

- **Burrowing Owls:** Indirect impacts would be similar to those identified as common to all bird species.

- **Raptors:** Indirect impacts would be similar to those identified as common to all bird species.

Mammals: Operation of the Fresno to Bakersfield Section at-grade could result in displacement of these species from noise, vibration, wind, and visual stimuli, and from the actual fragmentation of the landscape as a result of the construction of the project infrastructure. These effects may result in shifts in foraging patterns or territories, or dispersal movements, increased predation, decreased reproductive success, and reduced population viability. Indirect impacts may include any additional pressures on the landscape from the colonization of nonnative plant species. The change in plant species could further reduce adjacent habitat values. Local noise and motion disturbance effects resulting from HST operation may cause some avoidance behavior.

Native fauna: Indirect impacts for native fauna (e.g., fish, mollusks, crustaceans, amphibians, birds, mammals, reptiles, and insects) are similar to those impacts described above for special-status wildlife species.

BNSF Alternative

Project impacts associated with the BNSF Alternative would result in direct and indirect impacts on a number of special-status wildlife species and their habitat (Appendix 3.7-B, Attachment 2). These impacts would occur as discussed above under direct and indirect impacts on special-status wildlife species. The potential for the various special-status wildlife species to occur throughout the BNSF Alternative varies according to the species known geographic range and the presence of suitable habitat capable of supporting the species life history (Appendix 3.7-A,
Attachment 2). Table 3.7-9 lists the amount of terrestrial and aquatic habitat (in acres), respectively, that would potentially be permanently affected by the HST alternative alignments.

Invertebrates: Suitable habitat for special-status invertebrate species would be permanently affected by project activities associated with the BNSF Alternative (Appendix 3.7-B, Attachment 2). Seasonal wetlands and vernal pools within the northern portion of the BNSF Alternative may provide habitat for vernal pool fairy shrimp and vernal pool tadpole shrimp. Elderberry shrubs were identified within the BNSF Alternative in Fresno and Kings counties, primarily along the Kings River, Cole Slough, and Dutch John Slough. Elderberry shrubs may provide suitable habitat for the valley elderberry longhorn beetle, which exclusively uses this shrub as its host plant. Due to the presence of suitable habitat, the BNSF Alternative would result in relatively high-intensity loss to habitat that likely supports, in at least some areas, special-status invertebrates. Therefore, the project impacts of the BNSF Alternative would result in an effect of substantial intensity on special-status invertebrate species and their habitats under NEPA and a significant impact under CEQA.

Fish: A single special-status fish species (i.e., Kern brook lamprey) may be present in a single location within the BNSF Alternative, the Friant-Kern Canal in Bakersfield. This canal has the potential to support the Kern brook lamprey; however, this canal is a dead-end habitat that lacks suitable spawning substrate for this species (Moyle 2002). At this location the BNSF Alternative would be constructed on an elevated structure. Project impacts associated with the elevated structure could result in direct and indirect impacts on Kern brook lamprey in a limited area (Appendix 3.7-B, Attachment 2). While other streams within the BNSF Alternative may provide suitable habitat for Kern brook lamprey, these streams are inaccessible either because of extensive water diversions and in-stream obstructions to migratory movement or because they are outside the range of this species. Due to the limited amount of suitable habitat present for special-status fish, the BNSF Alternative would result in only a slight change from existing biological conditions and little to no regional effects. Therefore, the project impacts of the BNSF Alternative would result in an effect of negligible intensity on Kern brook lamprey and their habitats under NEPA, and a less than significant impact under CEQA.

Amphibians: Suitable upland and breeding habitat for western spadefoot toad and California tiger salamander would be permanently affected by project activities associated with the BNSF Alternative (Appendix 3.7-B, Attachment 2).

Potential suitable breeding habitat for western spadefoot toad consists of wetlands and riverine and adjacent upland habitat (e.g., annual grassland and alkali desert scrub). Impacts on this species may occur throughout the BNSF Alternative where suitable aquatic habitat is present.

Suitable aquatic habitats for California tiger salamander are present in the project footprint; permanent impacts on suitable California tiger salamander aquatic and upland habitat are anticipated to occur as a result of the BNSF Alternative. However, these impacts are limited to the natural area between Cross Creek and Corcoran. This suitable aquatic habitat occurs in areas limited to the man-made lacustrine features south of Cross Creek that are owned and operated by the Corcoran Irrigation Water District. These features provide manipulated inundation patterns that may limit suitability for breeding and are encircled by a large berm, which may limit accessibility. The BNSF Alternative overlaps suitable California tiger salamander upland habitat (i.e., annual grassland within 1.24 miles of the Corcoran Irrigation Water District). The adjacent potentially suitable upland habitat has been recently developed and may limit the species ability to disperse or migrate to or occur within the project footprint.

Due to the presence of suitable habitat, the BNSF Alternative would result in relatively high-intensity loss of habitat that may support special-status amphibians. Therefore, the project
impacts of the BNSF Alternative would result in an effect of substantial intensity on special-status amphibian species and their habitats under NEPA and a significant impact under CEQA.

Reptiles: Suitable habitat for special-status reptile species would be permanently affected by project activities associated with the BNSF Alternative (Appendix 3.7-B, Attachment 2). Aquatic habitats, such as riverine and lacustrine habitats, as well as natural upland areas, such as alkali desert scrub and annual grassland, are present and may support a range of special-status reptiles, including the western pond turtle, blunt-nosed leopard lizard, silvery legless lizard, San Joaquin whipsnake, and coast horned lizard. Due to the presence of suitable habitat, the BNSF Alternative would result in relatively high-intensity loss of habitat that may support special-status reptiles. Therefore, the project impacts of the BNSF Alternative would result in an effect of substantial intensity on special-status reptile species and their habitats under NEPA and a significant impact under CEQA.

Birds (includes all migratory birds covered under MBTA): A number of habitats known to support special-status birds and raptors would be permanently affected by project activities associated with the BNSF Alternative (Appendix 3.7-B, Attachment 2). Aquatic and riparian habitats (e.g., riverine, lacustrine, valley foothill riparian) and agricultural lands may provide suitable habitat for a variety of birds and raptors. Impacts on these habitats would result in relatively high-intensity loss of habitat that may support special-status bird species. Therefore, the project impacts of the BNSF Alternative would result in an effect of substantial intensity on special-status bird species and their habitats under NEPA and a significant impact under CEQA.

Mammals: A number of habitats known to support special-status mammals would be permanently affected by project activities associated with the BNSF Alternative (Appendix 3.7-B, Attachment 2). Natural habitats, such as alkali desert scrub and annual grassland, may support special-status mammals (e.g., American badger, San Joaquin kit fox, and Tipton kangaroo rat). Trees and rocky outcrops in natural habitats, such as valley foothill riparian, as well as trees and buildings in rural and urban areas, may support special-status bats. The BNSF Alternative contains suitable habitat (e.g., annual grassland and alkali desert scrub) for special-status mammals, including Tipton kangaroo rat, Dulzura pocket mouse, and the San Joaquin kit fox. Special-status mammals would potentially be permanently affected, both directly and indirectly, by operation activities. Due to the presence of suitable habitat, the BNSF Alternative would result in relatively high-intensity loss of habitat that may support special-status mammals. Therefore, the project impacts of the BNSF Alternative would result in an effect of substantial intensity on special-status mammal species and their habitats under NEPA and a significant impact under CEQA.

Native fauna: Suitable habitat for native fauna would be permanently affected by construction of the BNSF Alternative (Table 3.7-9). Suitable habitat for native fauna includes both developed and natural lands. Due to the large area of habitat that would be affected, the BNSF Alternative would have influential regional effects on native fauna and would result in relatively high-intensity loss of this resource. Therefore, the project impacts of the BNSF Alternative would result in an effect of substantial intensity under NEPA and a significant impact under CEQA on native fauna.

Hanford West Bypass 1 and Hanford West Bypass 1 Modified Alternatives

Project impacts associated with the Hanford West Bypass 1 alternatives would result in direct and indirect impacts on a number of special-status wildlife species and their habitat. These impacts would occur through the same mechanisms as described above in the discussion of direct and indirect impacts on special-status wildlife species. The amount of permanent impacts associated with project period impacts is provided in Appendix 3.7-B, Attachment 2. The potential for the various special-status wildlife species to occur throughout the Hanford West Bypass 1 alternatives varies according to the species’ known geographic range and the presence of suitable habitat.
capable of supporting the species' life history (Appendix 3.7-A, Attachment 2). Table 3.7-9 lists the amount of terrestrial and aquatic habitat (in acres) that would potentially be permanently affected by the HST alignment alternatives.

Both the Hanford West Bypass 1 alternatives and corresponding segment of the BNSF Alternative are in a rural setting dominated by agricultural land uses. The Hanford West Bypass 1 alternatives would result in fewer permanent direct impacts on agricultural lands suitable for special-status wildlife species and slightly more permanent direct impacts on natural habitats suitable for special-status wildlife species (Table 3.7-9; Appendix 3.7-B, Attachment 2).

Invertebrates: The Hanford West Bypass 1 alternatives contain a small amount of suitable habitat (i.e., other seasonal wetlands) for vernal pool fairy shrimp and vernal pool tadpole shrimp. Elderberry shrubs, the sole host plant of the valley elderberry longhorn beetle, have not been identified in the Hanford West Bypass 1 alternatives. This species could be temporarily affected if project activities occur in unsurveyed natural areas (e.g., valley foothill riparian) that contain elderberry shrubs. Special-status invertebrates would be permanently affected, both directly and indirectly, by project operation-related activities associated with this alternative (Appendix 3.7-B, Attachment 2).

Because suitable habitat, including a small amount of aquatic habitat, is present the Hanford West Bypass 1 alternatives would result in the loss of habitat that may support special-status invertebrates. Therefore, the project impacts of the Hanford West Bypass 1 alternatives would result in an effect of moderate intensity under NEPA, and a significant impact under CEQA on special-status invertebrate species.

Fish: Special-status fish species are not expected to occur within the Hanford West Bypass 1 alternatives, as streams within this alternative are inaccessible either because of extensive water diversions and in-stream obstructions to migratory movement or because they are outside the range of special-status fish species. Therefore, no direct or indirect impacts on special-status fish would result from project activities associated with this alternative.

Project period impacts of the Hanford West Bypass 1 alternatives would result in no effect under NEPA, and no impact under CEQA on special-status fish species.

Amphibians: The Hanford West Bypass 1 alternatives include suitable aquatic and upland habitat, such as annual grassland, for California tiger salamander (breeding habitat limited to just one man-made lacustrine feature) and western spadefoot toad. Special-status amphibians would be permanently affected, both directly and indirectly, by project impacts associated with this alternative (Appendix 3.7-B, Attachment 2). Portions of the Hanford West Bypass 1 alternatives in agricultural land uses provide little value or habitat for special-status amphibian species.

Because the Hanford West Bypass 1 alternatives affect considerable amounts of natural land that provides suitable habitat for special-status amphibians, these alternatives may result in relatively high-intensity loss for these species. Therefore, the project impacts of the Hanford West Bypass 1 alternatives would result in an effect of substantial intensity under NEPA and a significant impact under CEQA on special-status amphibian species.

Reptiles: The Hanford West Bypass 1 alternatives contain suitable habitat (e.g., annual grassland, valley foothill riparian, riverine) for special-status reptiles, including coast horned lizard. Portions of the Hanford West Bypass 1 alternatives in agricultural land uses provide little value or habitat for special-status reptile species. Special-status reptiles would be permanently affected, both directly and indirectly, by project impacts associated with this alternative (Appendix 3.7-B, Attachment 2).
Because the Hanford West Bypass 1 alternatives would affect considerable amounts of natural land that provides suitable habitat for special-status reptiles, these alternatives may result in relatively high-intensity loss for these species. Therefore, the project impacts of the Hanford West Bypass 1 alternatives would result in an effect of substantial intensity under NEPA and a significant impact under CEQA on special-status reptile species.

Birds (includes all migratory birds covered under MBTA): The Hanford West Bypass 1 alternatives contain suitable habitat (e.g., annual grassland, valley foothill riparian, and agricultural land uses) for migratory birds and special-status birds, including the western burrowing owl and sandhill crane (Appendix 3.7-A, Attachment 2). Special-status birds would be permanently affected, both directly and indirectly, by project impacts associated with this alternative (Appendix 3.7-B, Attachment 2).

The Hanford West Bypass 1 alternatives would impact natural and agricultural lands that provide habitat for special-status birds potentially resulting in relatively high-intensity loss for these species. Therefore, the project impacts of the Hanford West Bypass 1 alternatives would result in an effect of substantial intensity under NEPA and a significant impact under CEQA on special-status bird species.

Mammals: The Hanford West Bypass 1 alternatives contain suitable habitat (e.g., annual grassland, pasture, and agricultural lands) for special-status mammals, including San Joaquin kit fox, American badger, and Tipton kangaroo rat. The agricultural land uses likely provide little value for breeding for special-status mammal species. However, these areas may be suitable for dispersal and foraging activities. Natural lands may provide opportunity for breeding, foraging, dispersal, and migration of the special-status mammal species. Special-status mammals would be permanently affected, both directly and indirectly, by project impacts associated with this alternative (Appendix 3.7-B, Attachment 2).

The Hanford West Bypass 1 alternatives would impact natural and agricultural lands that provide habitat for special-status mammals potentially resulting in relatively high-intensity loss for these species. Therefore, the project impacts of the Hanford West Bypass 1 alternatives would result in an effect of substantial intensity under NEPA and a significant impact under CEQA on special-status mammal species.

Native fauna: The Hanford West Bypass 1 alternatives contain suitable habitat (e.g., annual grassland, valley foothill riparian, and agricultural land uses) for native fauna (Table 3.7-9). Native fauna would be permanently affected, both directly and indirectly, by project impacts associated with this alternative. Due to the large area of habitat that would be affected, the Hanford West Bypass 1 alternatives would have influential regional effects on native fauna and would result in relatively high-intensity loss of this resource. Therefore, the project impacts of the Hanford West Bypass 1 alternatives would result in an effect of substantial intensity under NEPA and a significant impact under CEQA on native fauna.

Hanford West Bypass 2 and Hanford West Bypass 2 Modified Alternatives

Project impacts associated with the Hanford West Bypass 2 alternatives would result in direct and indirect impacts on a number of special-status wildlife species and their habitat. These impacts would occur through the same mechanisms as described above in the discussion of direct and indirect impacts on special-status wildlife species. The amount of permanent impacts associated with project period impacts is provided in Appendix 3.7-B, Attachment 2. The potential for the various special-status wildlife species to occur throughout the Hanford West Bypass 2 alternatives varies according to the species’ known geographic range and the presence of suitable habitat capable of supporting the species’ life history (Appendix 3.7-A, Attachment 2). Table 3.7-9 lists
the amount of terrestrial and aquatic habitat (in acres) that would potentially be permanently affected by the HST alignment alternatives.

Both the Hanford West Bypass 2 alternatives and the corresponding segment of the BNSF Alternative are in a rural setting dominated by agricultural land uses. The Hanford West Bypass 2 alternatives would result in fewer permanent direct impacts on agricultural lands suitable for special-status wildlife species and more permanent direct impacts on natural habitats suitable for special-status wildlife species (Table 3.7-9; Appendix 3.7-B, Attachment 2).

Invertebrates: The Hanford West Bypass 2 alternatives contain a small amount of suitable habitat (i.e., other seasonal wetlands) for vernal pool fairy shrimp and vernal pool tadpole shrimp. Elderberry shrubs, the sole host plant of the valley elderberry longhorn beetle, have not been identified in the Hanford West Bypass 2 alternatives. This species could be temporarily affected if project activities occur in unsurveyed natural areas (e.g., valley foothill riparian) that contain elderberry shrubs. Special-status invertebrates would be permanently affected, both directly and indirectly, by project operation-related activities associated with this alternative (Appendix 3.7-B, Attachment 2).

Due to the presence of moderate amounts of suitable habitat, the Hanford West Bypass 2 alternatives would result in the loss of habitat that may support special-status invertebrates. Therefore, the project impacts of the Hanford West Bypass 2 alternatives would result in an effect of moderate intensity under NEPA, and a significant impact under CEQA on special-status invertebrate species.

Fish: Special-status fish species are not expected to occur within the Hanford West Bypass 2 alternatives, as streams within this alternative are inaccessible either because of extensive water diversions and in-stream obstructions to migratory movement or because they are outside the range of special-status fish species. Therefore, no direct or indirect impacts on special-status fish would result from project activities associated with this alternative.

Project period impacts of the Hanford West Bypass 2 alternatives would result in no effect under NEPA, and no impact under CEQA on special-status fish species.

Amphibians: The Hanford West Bypass 2 alternatives include suitable upland and aquatic habitat (e.g., annual grassland) for the California tiger salamander (breeding habitat limited to just one man-made lacustrine feature [see discussion under Impact BIO#2]) and western spadefoot toad. Special-status amphibians would be permanently affected, both directly and indirectly, by the project impacts associated with this alternative (Appendix 3.7-B, Attachment 2). Because the Hanford West Bypass 2 alternatives affect considerable amounts of natural land that provides suitable habitat for special-status amphibians, these alternatives may result in relatively high-intensity loss of habitat that has limited potential to support these species. Therefore, the project impacts of the Hanford West Bypass 2 alternatives would result in an effect of substantial intensity under NEPA and a significant impact under CEQA on special-status amphibian species.

Reptiles: The Hanford West Bypass 2 alternatives contain suitable habitat (e.g., annual grassland, valley foothill riparian, riverine) for special-status reptiles, including coast horned lizard. Portions of the Hanford West Bypass 2 alternatives in agricultural land uses provide little value or habitat for special-status reptile species. Special-status reptiles would be permanently affected, both directly and indirectly, by project impacts associated with these alternatives (Appendix 3.7-B, Attachment 2). Because the Hanford West Bypass 2 alternatives affect considerable amounts of natural land that provides suitable habitat for special-status reptiles, these alternatives may result in relatively high-intensity loss of habitat that has limited potential to support these species. Therefore, the project impacts of the Hanford West Bypass 2 alternatives would result in an
effect of substantial intensity under NEPA and a significant impact under CEQA on special-status reptile species.

Birds (includes all migratory birds covered under MBTA): The Hanford West Bypass 2 alternatives contain suitable habitat (e.g., annual grassland, valley foothill riparian, and agricultural land uses) for migratory birds and special-status birds, including western burrowing owl and sandhill crane (Appendix 3.7-A, Attachment 2). Special-status birds would be permanently affected, both directly and indirectly, by project impacts associated with this alternative (Appendix 3.7-B, Attachment 2).

The Hanford West Bypass 2 alternatives would impact natural and agricultural lands that provide habitat for special-status birds potentially resulting in relatively high-intensity loss of habitat that has potential to support for these species. Therefore, the project impacts of the Hanford West Bypass 2 alternatives would result in an effect of substantial intensity under NEPA and a significant impact under CEQA on special-status bird species.

Mammals: The Hanford West Bypass 2 alternatives contains suitable habitat (e.g., annual grassland, pasture, agricultural lands) for special-status mammals, including San Joaquin kit fox, American badger, and Tipton kangaroo rat. The agricultural land uses likely provide little value for breeding for special-status mammal species. However, these areas may be suitable for dispersal and foraging activities. Natural lands may provide opportunity for breeding, foraging, dispersal, and migration of the special-status mammal species. Special-status mammals would be permanently affected, both directly and indirectly, by project impacts associated with this alternative (Appendix 3.7-B, Attachment 2).

The Hanford West Bypass 2 alternatives would impact natural and agricultural lands that provide habitat for special-status mammals potentially resulting in relatively high-intensity loss of habitat that has limited potential to support these species. Therefore, the project impacts of the Hanford West Bypass 2 alternatives would result in an effect of substantial intensity under NEPA and a significant impact under CEQA on special-status mammal species.

Native fauna: The Hanford West Bypass 2 alternatives contain suitable habitat (e.g., annual grassland, valley foothill riparian, and agricultural land uses) for native fauna (Table 3.7-9). Native fauna would be permanently affected, both directly and indirectly, by project impacts associated with this alternative. Due to the large area of habitat that would be affected, the Hanford West Bypass 2 alternatives would have influential regional effects on native fauna and would result in relatively high-intensity loss of this resource. Therefore, the project impacts of the Hanford West Bypass 2 alternatives would result in an effect of substantial intensity under NEPA and a significant impact under CEQA on native fauna.

Corcoran Elevated Alternative

Project impacts associated with the Corcoran Elevated Alternative would result in direct and indirect impacts on a number of special-status wildlife species and their habitat (Appendix 3.7-B, Attachment 2). These impacts would occur as discussed above under direct and indirect impacts on special-status wildlife species. The potential for the various special-status wildlife species to occur throughout the Corcoran Elevated Alternative varies according to the species’ known geographic range, and the presence of suitable habitat capable of supporting the species’ life history (Appendix 3.7-A, Attachment 2). Table 3.7-9 lists the amount of terrestrial and aquatic habitat (in acres), respectively, that would potentially be permanently affected by the HST alternative alignments.

Both the Corcoran Elevated Alternative and the corresponding BNSF Alternative segment are located in the urban areas of Corcoran. Both alternatives would affect small areas of habitat that could support special-status wildlife species; however, these habitats are mainly urban and
agricultural lands (Table 3.7-9), which have a low to moderate potential of supporting these species (Appendix 3.7-A, Attachment 2). The magnitude of these impacts is similar to those of the corresponding BNSF Alternative segment. However, direct impacts on these species are substantially less in the Corcoran Elevated Alternative, compared with those of the corresponding BNSF Alternative segment, because the elevated structure would maintain habitat porosity across the alignment.

Invertebrates: The Corcoran Elevated Alternative contains a small amount of suitable habitat (e.g., seasonal wetlands and vernal pools and swales) for vernal pool fairy shrimp and vernal pool tadpole shrimp. Elderberry shrubs, the host plant of the valley elderberry longhorn beetle, have not been identified in the Corcoran Elevated Alternative. These species could be permanently affected where project activities occur in natural areas that contain vernal pools, seasonal wetlands, or elderberry shrubs. However, few natural aquatic areas are located in the Corcoran Bypass Alternative (Table 3.7-14). These species have a low to moderate potential to occur in this alternative.

The few remaining natural habitats are in the median adjacent to the BNSF railroad and in some instances are between the BNSF tracks and SR 43. Because of the landscape position and proximity to disturbed areas, the suitable habitats provide limited potential to support vernal pool fairy shrimp and vernal pool tadpole shrimp. However, protocol level surveys have not been conducted to confirm species absence.

Impacts on suitable habitat that has the potential (albeit limited) to support special-status invertebrates, if the species is present, mean that the Corcoran Elevated Alternative could result in incremental impacts on special-status invertebrate species; therefore, the project impacts of the Corcoran Elevated Alternative would result in an effect of moderate intensity under NEPA, and a significant impact under CEQA on special-status invertebrate species.

Fish: Special-status fish species are not expected to occur within the Corcoran Elevated Alternative as streams within this alternative are inaccessible either because of extensive water diversions and in-stream obstructions to migratory movement or because they are outside the range of special-status fish species. Therefore, no direct or indirect impacts on special-status fish would result from project impacts associated with this alternative. Project impacts of the Corcoran Elevated Alternative would result in no effect under NEPA, and no impact under CEQA on special-status fish species.

Amphibians: The Corcoran Elevated Alternative includes suitable habitat (e.g., annual grassland) for California tiger salamander and western spadefoot toad. Special-status amphibians would be permanently affected, both directly and indirectly, by project impacts associated with this alternative (Appendix 3.7-B, Attachment 2). Portions of the Corcoran Elevated Alternative in agricultural and urban land uses likely provide little value for this species. Impacts on suitable habitat for special-status amphibians in the Corcoran Elevated Alternative may result in the loss of habitat that has limited potential to support these species. Because focused or protocol-level surveys have not been conducted, the species is assumed to be present in areas containing suitable habitat. Given the amount of potentially suitable habitat, if the species is present, the impacts on suitable habitat would result in influential regional effects on a special-status amphibian species. Therefore, the project impacts of the Corcoran Elevated Alternative would result in an effect of substantial intensity under NEPA and a significant impact under CEQA on special-status amphibian species.

Reptiles: The Corcoran Elevated Alternative occurs mainly in urban and agricultural lands but does contain some habitat that is potentially suitable for special-status reptile species, including

1 This change in NEPA intensity from the Revised DEIR/Supplemental DEIS is based on a technical correction.
considerable amounts of annual grassland (Appendix 3.7-A, Attachment 2). Portions of the Corcoran Elevated Alternative in agricultural and urban land uses likely provide little value for special-status reptile species. Special-status reptiles may be permanently affected, both directly and indirectly, by construction of this alternative (Appendix 3.7-B, Attachment 2). Due to the large areas of natural habitat present, the Corcoran Elevated Alternative may result in relatively high-intensity loss of habitat that has limited potential to support special-status reptiles. Therefore, the project impacts of the Corcoran Elevated Alternative would result in an effect of substantial intensity under NEPA and a significant impact under CEQA on special-status reptile species.

Birds (includes all migratory birds covered under MBTA): The Corcoran Elevated Alternative contains suitable habitat (including both natural habitats and agricultural land uses) for a variety of special-status birds (Appendix 3.7-A, Attachment 2). Special-status birds would be permanently affected, both directly and indirectly, by project impacts associated with this alternative (Appendix 3.7-B, Attachment 2). Due to the large areas of natural habitat and agricultural lands present, the Corcoran Elevated Alternative may result in relatively high-intensity loss of habitat that has potential to support special-status birds. Therefore, the project impacts of the Corcoran Elevated Alternative would result in an effect of substantial intensity under NEPA and a significant impact under CEQA on special-status bird species.

Mammals: The Corcoran Elevated Alternative contains both natural lands (e.g., annual grassland) and agricultural lands that provide suitable habitat for special-status mammal species (e.g., Tipton kangaroo rat and the San Joaquin kit fox). The agricultural land uses likely provide little value for breeding for special-status mammal species; however, these areas may be suitable for dispersal and foraging activities. Natural lands may provide opportunity for breeding, foraging, dispersal, and migration of the special-status mammal species. Special-status mammals would be permanently affected, both directly and indirectly, by project impacts associated with this alternative (Appendix 3.7-B, Appendix 2). Due to the large areas of natural habitat and agricultural lands present, the Corcoran Elevated Alternative may result in relatively high-intensity loss of habitat that has limited potential to support special-status mammals. Therefore, the project impacts of the Corcoran Elevated Alternative would result in an effect of substantial intensity under NEPA and a significant impact under CEQA on special-status mammal species.

Native fauna: The Corcoran Elevated Alternative contains suitable habitat (including both natural habitats and agricultural land uses) for native fauna (Table 3.7-9). Native fauna would be permanently affected, both directly and indirectly, by project impacts associated with this alternative. Due to the large area of habitat that would be affected, the Corcoran Elevated Alternative would have influential regional effects on native fauna and would result in relatively high-intensity loss of this resource. Therefore, the project impacts of the Corcoran Elevated Alternative would result in an effect of substantial intensity under NEPA and a significant impact under CEQA on native fauna.

Corcoran Bypass Alternative

Project activities associated with the Corcoran Bypass Alternative would result in direct and indirect project impacts on a number of special-status wildlife species and their habitat (Appendix 3.7-B, Attachment 2). These impacts would occur as discussed above under direct and indirect impacts on special-status wildlife species. The potential for the various special-status wildlife species to occur throughout the Corcoran Bypass Alternative varies according to the species’ known geographic range, and the presence of suitable habitat capable of supporting the species’ life history (Appendix 3.7-A, Attachment 2). Table 3.7-9 lists the amount of terrestrial and aquatic habitat (in acres) that would potentially be permanently affected by the HST alternative alignments.
The segment of the BNSF Alternative that corresponds to the Corcoran Bypass Alternative would run through the urban areas of Corcoran and, in some instances, annual grasslands adjacent to SR 43 and the BNSF Railway right-of-way, while the Corcoran Bypass Alternative would affect annual grasslands that would provide higher habitat value for special-status species (Appendix 3.7-B, Attachment 2; Table 3.7-9). Project activities associated with the Corcoran Bypass Alternative would have fewer permanent impacts on some aquatic and riparian habitats (e.g., riverine, valley foothill riparian, and lacustrine) and on urban, agricultural lands, and would have more impacts on annual grassland and pasture than the corresponding segment of the BNSF Alternative (see Tables 3.7-9). Also, the Corcoran Bypass Alternative would create a new transportation alignment in these habitats, resulting in greater indirect impacts (i.e., habitat fragmentation) than those of the BNSF Alternative, which follows existing transportation alignments. Both the Corcoran Bypass Alternative and the corresponding segment of the BNSF Alternative would run through areas in the vicinity of Cross Creek and the Tulare Lakebed Mitigation Site.

Therefore, the Corcoran Bypass Alternative would result in greater permanent direct impacts on suitable habitat for special-status wildlife species. Indirect impacts on these species are also greater in the Corcoran Bypass Alternative, compared with those of the corresponding BNSF Alternative segment, because of habitat fragmentation resulting from construction of a new transportation alignment.

Invertebrates: The Corcoran Bypass Alternative contains a small amount of suitable habitat (e.g., seasonal wetland) for vernal pool fairy shrimp and vernal pool tadpole shrimp (Appendix 3.7-B, Attachment 2). Elderberry shrubs, the sole host plant of the valley elderberry longhorn beetle, have not been identified in the Corcoran Bypass. However, this species could be affected where project impacts would occur in unsurveyed natural areas. Special-status invertebrates would be permanently affected, both directly and indirectly, by project impacts associated with this alternative. However, few natural aquatic areas are in the Corcoran Bypass Alternative (Table 3.7-14, below). These species have a low to moderate potential to occur in this alternative.

The few remaining natural habitats are in the median adjacent to the BNSF railroad and in some instances are between the BNSF tracks and SR 43. Because of the landscape position and proximity to disturbed areas, the suitable habitats provide limited potential to support vernal pool fairy shrimp and vernal pool tadpole shrimp. However, protocol-level surveys have not been conducted to confirm the absence of the species.

Impacts of the Corcoran Bypass Alternative on suitable habitat that has limited potential to support special-status invertebrates may result in the incremental loss of these species. Therefore, the project impacts of the Corcoran Bypass Alternative would result in an effect of moderate intensity under NEPA, and a significant impact under CEQA on special-status invertebrate species.

Fish: Special-status fish species are not expected to occur within the Corcoran Bypass Alternative, as streams within this alternative are inaccessible either because of extensive water diversions and in-stream obstructions to migratory movement or because they are outside the range of special-status fish species. Therefore, no direct or indirect impacts on special-status fish would result from project impacts associated with this alternative. Project impacts of the Corcoran Bypass Alternative would result in no effect under NEPA, and no impact under CEQA on special-status fish species.

Amphibians: The Corcoran Bypass Alternative includes suitable habitat, such as annual grassland, for California tiger salamander and western spadefoot toad. Special-status amphibians would be
permanently affected, both directly and indirectly, by project impacts associated with this alternative (Appendix 3.7-B, Attachment 2).

Due to the presence of suitable habitat, the Corcoran Bypass Alternative may result in relatively high-intensity loss of habitat that has potential to support special-status amphibians. Therefore, the project impacts of the Corcoran Bypass Alternative would result in an effect of substantial intensity under NEPA, and a significant impact under CEQA on special-status amphibian species.

Reptiles: Project activities associated with the Corcoran Bypass Alternative would impact upland and aquatic habitat (annual grassland, valley foothill riparian, riverine, and lacustrine) potentially suitable for special-status reptile species (Appendix 3.7-A, Attachment 2). Portions of the Corcoran Bypass Alternative in agricultural and urban land uses likely provide little value for special-status reptile species. Special-status reptiles may be permanently affected, both directly and indirectly, by construction of this alternative (Appendix 3.7-B, Attachment 2). Due to the large areas of natural habitat present, the Corcoran Bypass Alternative may result in relatively high-intensity loss of habitat that has limited potential to support special-status reptiles. Therefore, the project impacts of the Corcoran Bypass Alternative would result in an effect of substantial intensity under NEPA and a significant impact under CEQA on special-status reptile species.

Birds (includes all migratory birds covered under MBTA): The Corcoran Bypass Alternative contains suitable habitat (including both natural habitats and agricultural land uses) for a variety of special-status birds (Appendix 3.7-A, Attachment 2). Special-status birds would be permanently affected, both directly and indirectly, by project impacts associated with this alternative (Appendix 3.7-B, Attachment 2). Due to the large areas of natural habitat and agricultural lands present, the Corcoran Bypass Alternative may result in relatively high-intensity loss for special-status birds. Therefore, the project impacts of the Corcoran Bypass Alternative would result in an effect of substantial intensity under NEPA and a significant impact under CEQA on special-status bird species.

Mammals: The Corcoran Bypass Alternative contains both natural lands and agricultural lands that provide suitable habitat (e.g., annual grassland and barren) for special-status mammal species (e.g., Tipton kangaroo rat and the San Joaquin kit fox). The agricultural land uses likely provide little value for breeding for special-status mammal species; however, these areas may be suitable for dispersal and foraging activities. Natural lands may provide opportunity for breeding, foraging, dispersal, and migration of the special-status mammal species. Special-status mammals would be permanently affected, both directly and indirectly, by project impacts associated with this alternative (Appendix 3.7-B, Attachment 2). Due to the large areas of natural habitat and agricultural lands present, the Corcoran Bypass Alternative may result in relatively high-intensity loss of habitat that has limited potential to support special-status mammals. Therefore, the project impacts of the Corcoran Bypass Alternative would result in an effect of substantial intensity under NEPA and a significant impact under CEQA on special-status mammal species.

Native fauna: The Corcoran Bypass Alternative contains suitable habitat for native fauna (Table 3.7-9). Native fauna would be permanently affected, both directly and indirectly, by project impacts associated with this alternative. Due to the large area of habitat that would be affected, the Corcoran Bypass Alternative would have influential regional effects on native fauna and would result in relatively high-intensity loss of this resource. Therefore, the project impacts of the Corcoran Bypass Alternative would result in an effect of substantial intensity under NEPA and a significant impact under CEQA on native fauna.
Allensworth Bypass Alternative

Project activities associated with the Allensworth Bypass Alternative would result in direct and indirect impacts on a number of special-status wildlife species and their habitat. These impacts would occur as discussed above under direct and indirect impacts on special-status wildlife species. The amount of permanent impacts associated with the project operation is provided in Appendix 3.7-B, Attachment 2. The potential for the various special-status wildlife species to occur throughout the Allensworth Bypass Alternative varies according to the species’ known geographic range, and the presence of suitable habitat capable of supporting the species’ life history (Appendix 3.7-A, Attachment 2). Tables 3.7-9 lists the amount of terrestrial and aquatic habitat (in acres) that would potentially be permanently affected by the HST alternative alignments.

The Allensworth Bypass Alternative would result in fewer permanent direct impacts on natural habitats (e.g., annual grassland, valley foothill riparian, alkali desert scrub, vernal pools, other seasonal wetlands, and riverine) and developed lands suitable for special-status wildlife species than the corresponding segment of the BNSF Alternative (Table 3.7-9; Appendix 3.7-B, Attachment 2).

Invertebrates: The Allensworth Bypass Alternative contains suitable habitat (e.g., vernal pools) for vernal pool fairy shrimp and vernal pool tadpole shrimp. Elderberry shrubs, the sole host plant of the valley elderberry longhorn beetle, have not been identified in the Allensworth Bypass Alternative. However, this species could be affected where the project occurs in unsurveyed natural areas. Special-status invertebrates would be permanently affected, both directly and indirectly, by project operation-related activities associated with this alternative (Appendix 3.7-B, Attachment 2). The Allensworth Bypass would affect considerable areas of suitable habitat for special-status invertebrates, potentially resulting in relatively high-intensity loss for these species. Therefore, the project impacts of the Allensworth Bypass Alternative would result in an effect of substantial intensity under NEPA and a significant impact under CEQA on special-status invertebrate species.

Fish: Special-status fish species are not expected to occur within Allensworth Bypass Alternative, as streams within this alternative are inaccessible either because of extensive water diversions and in-stream obstructions to migratory movement or because they are outside the range of special-status fish species. Therefore, no direct or indirect project impacts on special-status fish would result from project impacts associated with this alternative (Appendix 3.7-B, Attachment 2). Project impacts of the Allensworth Bypass Alternative would result in no effect under NEPA, and no impact under CEQA on special-status fish species.

Amphibians: The Allensworth Bypass Alternative contains suitable habitat (e.g., vernal pools, annual grassland, and alkali desert scrub) for western spadefoot toad. Portions of the Allensworth Bypass Alternative in agricultural land uses provide little value or habitat for this special-status amphibian species. This special-status amphibian would be permanently affected, both directly and indirectly, by project impacts associated with this alternative (Appendix 3.7-B, Attachment 2). Due to the presence of suitable habitat, including suitable upland habitat, the Allensworth Bypass Alternative may result in relatively high-intensity loss of habitat that has potential to support special-status amphibians. Therefore, the project impacts of the Allensworth Bypass Alternative would result in an effect of substantial intensity under NEPA and a significant impact under CEQA on special-status amphibian species.

Reptiles: The Allensworth Bypass Alternative contains suitable habitat (e.g., annual grassland and alkali desert scrub) for special-status reptiles, including blunt-nosed leopard lizard and coast horned lizard. Portions of the Allensworth Bypass Alternative in agricultural land uses provide little value or habitat for special-status reptile species. Special-status reptiles would be
permanently affected, both directly and indirectly, by project impacts associated with this alternative (Appendix 3.7-B, Attachment 2). Due to the large areas of natural habitat present, the Allensworth Bypass Alternative may result in relatively high-intensity loss of habitat that has potential to support special-status reptiles. Therefore, the project impacts of the Allensworth Bypass Alternative would result in an effect of substantial intensity under NEPA and a significant impact under CEQA on special-status reptile species.

Birds (includes all migratory birds covered under MBTA): The Allensworth Bypass Alternative contains suitable habitat (e.g., annual grassland, alkali desert scrub, and agricultural land uses) for migratory birds and special-status birds, including western burrowing owl and sandhill crane (Appendix 3.7-A, Attachment 2). Special-status birds would be permanently affected, both directly and indirectly, by project impacts associated with this alternative (Appendix 3.7-B, Attachment 2). Due to the large areas of natural habitat and agricultural lands present, the Allensworth Bypass Alternative may result in relatively high-intensity loss of habitat that has potential to support special-status birds. Therefore, the project impacts of the Allensworth Bypass Alternative would result in an effect of substantial intensity under NEPA and a significant impact under CEQA on special-status bird species.

Mammals: The Allensworth Bypass Alternative contains suitable habitat (e.g., annual grassland and alkali desert scrub) for special-status mammals, including San Joaquin kit fox, American badger, and Tipton kangaroo rat. The agricultural land uses likely provide little value for breeding for special-status mammal species. However, these areas may be suitable for dispersal and foraging activities. Natural lands may provide opportunity for breeding, foraging, dispersal, and migration of the special-status mammal species. Special-status mammals would be permanently affected, both directly and indirectly, by project impacts associated with this alternative (Appendix 3.7-B, Attachment 2). Due to the large areas of natural habitat present, the Allensworth Bypass Alternative may result in relatively high-intensity loss of habitat that has potential to support special-status mammals. Therefore, the project impacts of the Allensworth Bypass Alternative would result in an effect of substantial intensity under NEPA and a significant impact under CEQA on special-status mammal species.

Native fauna: The Allensworth Bypass Alternative contains suitable habitat for native fauna (Table 3.7-9). Native fauna would be permanently affected, both directly and indirectly, by project impacts associated with this alternative. Due to the large area of habitat that would be affected, the Allensworth Bypass Alternative would have influential regional effects on native fauna and would result in relatively high-intensity loss of this resource. Therefore, the project impacts of the Allensworth Bypass Alternative would result in an effect of substantial intensity under NEPA and a significant impact under CEQA on native fauna.

Wasco-Shafter Bypass Alternative

Project activities associated with the Wasco-Shafter Bypass Alternative would result in direct and indirect impacts on a number of special-status species. These impacts would occur as discussed above under direct and indirect impacts on special-status wildlife species. The amount of permanent impacts associated with project operation is provided in Appendix 3.7-B, Attachment 2. The potential for the various special-status wildlife species to occur throughout the Wasco-Shafter Bypass Alternative varies according to the species’ known geographic range, and the presence of suitable habitat capable of supporting the species’ life history (Appendix 3.7-A, Attachment 2). Table 3.7-9 lists the amount of terrestrial and aquatic habitat (in acres) that would potentially be permanently affected by the HST alternative alignments.

In terms of calculated impacts, selection of the Wasco-Shafter Alternative would have slightly fewer impacts on natural habitats when compared to the corresponding segment of the BNSF Alternative (Table 3.7-9; Appendix 3.7-B, Attachment 2). Selection of the Wasco-Shafter
Alternative would have slightly greater impacts on agricultural lands and fewer impacts on urban areas when compared to the corresponding segment of the BNSF Alternative. Depending on the species-specific habitat requirements, the selection of the Wasco-Shafter Bypass would either increase or decrease impacts on special-status wildlife species.

Invertebrates: Project activities associated with the Wasco-Shafter Bypass Alternative would not permanently affect suitable habitat (e.g., vernal pool or seasonal wetland) for vernal pool fairy shrimp and vernal pool tadpole shrimp. Project activities associated with the Wasco-Shafter Bypass Alternative would also not temporarily affect suitable habitat (e.g., valley foothill riparian [elderberry shrubs]) for the valley elderberry longhorn beetle. Project period impacts under the Wasco-Shafter Bypass Alternative would result in no effect under NEPA, and no impact under CEQA on special-status invertebrate species.

Fish: Special-status fish species are not expected to occur within the Wasco-Shafter Bypass Alternative, as streams within this alternative are inaccessible either because of extensive water diversions and in-stream obstructions to migratory movement or because they are outside the range of special-status fish species. Therefore, no direct or indirect impacts on special-status fish would result from project impacts associated with this alternative. Project impacts of the Wasco-Shafter Bypass Alternative would result in no effect under NEPA, and no impact under CEQA on special-status fish species.

Amphibians: The Wasco-Shafter Bypass Alternative contains limited suitable habitat (e.g., riverine, annual grassland) for special-status amphibian species (Appendix 3.7-A, Attachment 2). This special-status amphibian species would be permanently affected, both directly and indirectly by project impacts associated with this alternative (Appendix 3.7-B, Attachment 2). Due to the presence of suitable habitat, the Wasco-Shafter Bypass Alternative may result in the loss of habitat that has limited potential to support special-status amphibians. Therefore, project period impacts under the Wasco-Shafter Bypass Alternative would result in an effect of moderate intensity under NEPA, and a significant impact under CEQA on this special-status amphibian species.

Reptiles: The Wasco-Shafter Bypass Alternative contains fragmented habitat (e.g., riverine, lacustrine, annual grassland) for special-status reptiles, including blunt-nosed leopard lizard and western pond turtle. Because suitable habitats in the Wasco-Shafter Bypass Alternative are small and fragmented, the potential for special-status reptiles to occur may be limited. Special-status reptiles would be permanently affected, both directly and indirectly, by project impacts associated with this alternative (Appendix 3.7-B, Attachment 2). Although natural habitats are fragments, the total area of these suitable habitats is large enough to potentially result in relatively high-intensity loss of habitat that has limited potential to support special-status reptiles. Therefore, the project impacts of the Wasco-Shafter Bypass Alternative would result in an effect of substantial intensity under NEPA and a significant impact under CEQA on special-status reptile species.

Birds (includes all migratory birds covered under MBTA): The Wasco-Shafter Bypass Alternative contains suitable habitat (including both natural habitats and agricultural land uses) for special-status birds along much of its length. Special-status birds would be permanently affected, both directly and indirectly, by project impacts associated with this alternative (Appendix 3.7-B, Attachment 2). Due to the large areas of natural habitat and agricultural lands present, the Wasco-Shafter Bypass Alternative may result in relatively high-intensity loss of habitats that have potential to support special-status birds. Therefore, the project impacts of the Wasco-Shafter Bypass Alternative would result in an effect of substantial intensity under NEPA and a significant impact under CEQA on special-status bird species.
Mammals: The Wasco-Shafter Bypass Alternative contains suitable habitat (including both natural habitats and agricultural land uses) for special-status mammals (Appendix 3.7-A, Attachment 2). The agricultural land uses likely provide little value for breeding for special-status mammal species. However, these areas may be suitable for dispersal and foraging activities. Special-status mammals would be permanently affected, both directly and indirectly, by project impacts associated with this alternative. Due to the large areas of natural habitat and agricultural lands, the Wasco-Shafter Bypass Alternative may result in relatively high-intensity loss of habitats that have limited potential to support special-status mammals. Therefore, the project impacts of the Wasco-Shafter Bypass Alternative would result in an effect of substantial intensity under NEPA and a significant impact under CEQA on special-status mammal species.

Native fauna: The Wasco-Shafter Bypass Alternative contains suitable habitat for native fauna (Table 3.7-9). Native fauna would be permanently affected, both directly and indirectly, by project impacts associated with this alternative. Due to the large area of habitat that would be affected, the Wasco-Shafter Bypass Alternative would have influential regional effects on native fauna and would result in relatively high-intensity loss of this resource. Therefore, the project impacts of the Wasco-Shafter Bypass Alternative would result in an effect of substantial intensity under NEPA and a significant impact under CEQA on native fauna.

Bakersfield South Alternative

Project activities associated with the Bakersfield South Alternative would result in direct and indirect impacts on a number of special-status wildlife species and their habitat (Appendix 3.7-B, Attachment 2). These impacts would occur as discussed above under direct and indirect impacts on special-status wildlife species. The potential for the various special-status wildlife species to occur throughout the Bakersfield South Alternative varies according to the species known geographic range and the presence of suitable habitat capable of supporting the species’ life history (Appendix 3.7-A, Attachment 2). Table 3.7-9 lists the amount of terrestrial and aquatic habitat (in acres) that would potentially be permanently affected by the HST alternative alignments.

Both the Bakersfield South Alternative and the corresponding BNSF Alternative segment are located in a highly urbanized portion of metropolitan Bakersfield. Both alternatives would affect small areas of habitat that could support special-status wildlife species; the magnitude of these impacts is similar.

Invertebrates: The Bakersfield South Alternative contains a small amount of suitable habitat (e.g., seasonal wetlands) for vernal pool fairy shrimp and vernal pool tadpole shrimp. Elderberry shrubs, the sole host plant of the valley elderberry longhorn beetle, have not been identified in the Bakersfield South Alternative. However, this species would be affected where project impacts occur in unsurveyed natural areas and along the Kern River. Special-status invertebrates would be permanently affected, both directly and indirectly, by project impacts associated with this alternative (Appendix 3.7-B, Attachment 2). Impacts of the Bakersfield South Alternative on suitable habitat for special-status invertebrates may result in the loss of these species. Therefore, the project impacts of the Bakersfield South Alternative would result in an effect of moderate intensity under NEPA, and a significant impact under CEQA on special-status invertebrate species.

Fish: Within the Bakersfield South Alternative, a small amount of marginal habitat (i.e., riverine) for the Kern brook lamprey is present in the Friant-Kern Canal. The Bakersfield South Alternative is not expected to result in long-term permanent impacts on special-status fish because it would be operated on an elevated structure. Kern brook lamprey has a low potential to be permanently affected, both directly and indirectly, by project impacts associated with this alternative (Appendix 3.7-B, Attachment 2). Because a minimal amount of suitable habitat is present for special-status fish species, only a slight change to existing biological conditions is expected and
little to no regional effects. Therefore, the project impacts of the Bakersfield South Alternative would result in an effect of negligible intensity under NEPA and a less than significant impact under CEQA on special-status fish species.

Amphibians: The Bakersfield South Alternative contains limited suitable habitat (e.g., riverine, alkali desert scrub, and annual grassland) that may support western spadefoot toads (Appendix 3.7-A, Attachment 2). Western spadefoot toad would be permanently affected, both directly and indirectly, by construction of this alternative (Appendix 3.7-B, Attachment 2). Impacts of the Bakersfield South Alternative on suitable habitat for special-status amphibians may result in the loss of these species. Therefore, the project impacts of the Bakersfield South Alternative would result in an effect of moderate intensity under NEPA, and a significant impact under CEQA on this special-status amphibian species.

Reptiles: The Bakersfield South Alternative contains suitable habitat (e.g., annual grassland and alkali desert scrub) for special-status reptiles, including coast horned lizard (Appendix 3.7-B, Attachment 2). Special-status reptiles would be permanently affected, both directly and indirectly, by project impacts associated with this alternative. Impacts of the Bakersfield South Alternative on suitable habitat for special-status reptiles may result in the loss of these species. Therefore, the project impacts of the Bakersfield South Bypass Alternative would result in an effect of moderate intensity under NEPA and a significant impact under CEQA on special-status reptile species.

Birds (includes all migratory birds covered under MBTA): The Bakersfield South Alternative contains suitable habitat (including both natural habitats and agricultural land uses) for a variety of special-status birds, including burrowing owl. The natural areas provide suitable habitat for breeding, foraging, and migration stopover habitat. Special-status bird species and their habitat would be permanently affected, both directly and indirectly, by project impacts associated with this alternative (Appendix 3.7-B, Attachment 2). Impacts of the Bakersfield South Alternative on suitable habitat for special-status birds may result in the loss of these species. Therefore, the project impacts of the Bakersfield South Bypass Alternative would result in an effect of moderate intensity under NEPA and a significant impact under CEQA on special-status bird species.

Mammals: The Bakersfield South Alternative contains suitable habitat (e.g., annual grasslands, valley foothill riparian, barren), for special-status mammals, including San Joaquin kit fox and special-status bats. In addition, urban land uses in Bakersfield are used by San Joaquin kit fox. Special-status mammals would be permanently affected, both directly and indirectly, by project impacts associated with this alternative (Appendix 3.7-B, Attachment 2). Impacts of the Bakersfield South Alternative on suitable habitat for special-status mammals may result in the loss of these species. Therefore, the project impacts of the Bakersfield South Bypass Alternative would result in an effect of moderate intensity under NEPA and a significant impact under CEQA on special-status mammal species.

Native fauna: The Bakersfield South Alternative contains suitable habitat for native fauna (Table 3.7-9). Native fauna would be permanently affected, both directly and indirectly, by project impacts associated with this alternative. Due to the large area of habitat that would be affected, the Bakersfield South Alternative would have influential regional effects on native fauna and would result in relatively high-intensity loss of this resource. Therefore, the project impacts of the Bakersfield South Alternative would result in an effect of substantial intensity under NEPA and a significant impact under CEQA on native fauna.

Bakersfield Hybrid Alternative

Project activities associated with the Bakersfield Hybrid Alternative would result in direct and indirect impacts on a number of special-status wildlife species and their habitat (Appendix 3.7-B,
Attachment 2). The potential for the various special-status wildlife species to occur throughout the Bakersfield Hybrid Alternative varies according to the species’ known geographic range and the presence of suitable habitat capable of supporting the species’ life history (Appendix 3.7-A, Attachment 2). Table 3.7-9 lists the amount of terrestrial and aquatic habitat (in acres) that would potentially be permanently affected by the HST alternative alignments.

Both the Bakersfield Hybrid Alternative and the corresponding segment of the BNSF Alternative are located in a highly urbanized portion of metropolitan Bakersfield. Both alternatives would affect small areas of habitat that could support special-status wildlife species; the magnitude of these impacts is similar.

Invertebrates: The Bakersfield Hybrid Alternative contains a small amount of suitable habitat (e.g., other seasonal wetlands) for vernal pool fairy shrimp and vernal pool tadpole shrimp. Elderberry shrubs, the sole host plant of the valley elderberry longhorn beetle, have not been identified in the Bakersfield Hybrid Alternative. However, this species would be affected where project impacts occur in unsurveyed natural areas and along the Kern River. Special-status invertebrates would be permanently affected, both directly and indirectly, by project impacts associated with this alternative (Appendix 3.7-B, Attachment 2). Impacts of the Bakersfield Hybrid Alternative on suitable habitat for special-status invertebrates may result in the loss of these species. Therefore, the project impacts of the Bakersfield Hybrid Alternative would result in an effect of moderate intensity under NEPA, and a significant impact under CEQA on special-status invertebrate species.

Fish: Within the Bakersfield Hybrid Alternative, a small amount of marginal habitat (i.e., riverine) for the Kern brook lamprey is present in the Friant-Kern Canal. The Bakersfield Hybrid Alternative is not expected to result in long-term permanent impacts on special-status fish because it would be operated on an elevated structure. Kern brook lamprey has a low potential to be permanently affected, both directly and indirectly, by project impacts associated with this alternative (Appendix 3.7-B, Attachment 2). Because a minimal amount of suitable habitat is present for special-status fish species, only a slight change to existing biological conditions and little to no regional effects are expected. Therefore, the project impacts of the Bakersfield Hybrid Alternative would result in an effect of negligible intensity under NEPA and a less than significant impact under CEQA on special-status fish species because of the potential permanent direct and indirect impacts on the Kern brook lamprey and its habitat.

Amphibians: The Bakersfield Hybrid Alternative contains limited suitable habitat (e.g., riverine, alkali desert scrub, and annual grassland) that may support western spadefoot toads (Appendix 3.7-A, Attachment 2). Western spadefoot toad would be permanently affected, both directly and indirectly, by construction of this alternative (Appendix 3.7-B, Attachment 2). Impacts of the Bakersfield Hybrid Alternative on suitable habitat for special-status amphibians may result in the loss of these species. Therefore, the project impacts of the Bakersfield Hybrid Alternative would result in an effect of moderate intensity under NEPA, and a significant impact under CEQA on this special-status amphibian species.

Reptiles: The Bakersfield Hybrid Alternative contains suitable habitat (e.g., annual grassland and alkali desert scrub) for special-status reptiles, including coast horned lizard (Appendix 3.7-B, Attachment 2). Special-status reptiles would be permanently affected, both directly and indirectly, by project impacts associated with this alternative. Impacts of the Bakersfield Hybrid Alternative on suitable habitat for special-status reptiles may result in the loss of these species. Therefore, the project impacts of the Bakersfield Hybrid Bypass Alternative would result in an effect of moderate intensity under NEPA and a significant impact under CEQA on special-status reptile species.
Birds (includes all migratory birds covered under MBTA): The Bakersfield Hybrid Alternative contains suitable habitat (including both natural habitats and agricultural land uses) for a variety of special-status birds, including burrowing owl. The natural areas provide suitable habitat for breeding, foraging, and migration stopover habitat. Special-status bird species and their habitat would be permanently affected, both directly and indirectly, by project impacts associated with this alternative (Appendix 3.7-B, Attachment 2). Impacts of the Bakersfield Hybrid Alternative on suitable habitat for special-status birds may result in the loss of these species. Therefore, the project impacts of the Bakersfield Hybrid Alternative would result in an effect of moderate intensity under NEPA and a significant impact under CEQA on special-status bird species.

Mammals: The Bakersfield Hybrid Alternative contains suitable habitat (e.g., annual grasslands, valley foothill riparian, barren), for special-status mammals, including San Joaquin kit fox and special-status bats. In addition, urban land uses in Bakersfield are used by San Joaquin kit fox. Special-status mammals would be permanently affected, both directly and indirectly, by project impacts associated with this alternative (Appendix 3.7-B, Attachment 2). Impacts of the Bakersfield Hybrid Alternative on suitable habitat for special-status mammals may result in the loss of these species. Therefore, the project impacts of the Bakersfield Hybrid Alternative would result in an effect of moderate intensity under NEPA and a significant impact under CEQA on special-status mammal species.

Native fauna: The Bakersfield Hybrid Alternative contains suitable habitat for native fauna (Table 3.7-9). Native fauna would be permanently affected, both directly and indirectly, by project impacts associated with this alternative. Due to the large area of habitat that would be affected, the Bakersfield Hybrid Alternative would have influential regional effects on native fauna and would result in relatively high-intensity loss of this resource. Therefore, the project impacts of the Bakersfield Hybrid Alternative would result in an effect of substantial intensity under NEPA and a significant impact under CEQA on native fauna.

Heavy Maintenance Facility Alternatives

Table 3.7-12 lists special-status wildlife species potentially affected by the HMF alternatives and the potential for project impacts on the species. The conclusions presented in Table 3.7-13 are based on the presence or absence of terrestrial and aquatic habitats (Table 3.7-10) suitable for these species that would potentially be permanently affected by the HST heavy maintenance facility alternatives.

Fresno Works—Fresno HMF Site: The Fresno Works—Fresno HMF contains suitable habitat (e.g. seasonal wetlands, riverine, lacustrine, pasture) for special-status wildlife, including vernal pool branchiopods, amphibians, reptiles, birds, mammals, and bats. Project effects on these species are presented in Table 3.7-12. Due to the presence of moderate amounts suitable habitat, the Fresno Works—Fresno HMF would result in the loss of special-status wildlife species. Therefore, the project effects of the Fresno Works—Fresno HMF may result in an effect of moderate intensity under NEPA, and a significant impact under CEQA on special-status wildlife species.

Kings County–Hanford HMF Site: The Kings County–Hanford HMF contains suitable habitat (e.g. riverine, pasture, agricultural land) for special-status wildlife, including amphibians, reptiles, birds, mammals, and bats. Project effects on these species are presented in Table 3.7-12. Due to the presence of considerable amounts suitable habitat, the Kings County–Hanford HMF would result in relatively high-intensity loss of special-status wildlife species. Therefore, the project effects of the Kings County–Hanford HMF may result in an effect of substantial intensity under NEPA, and a significant impact under CEQA on special-status wildlife species.

Kern Council of Governments–Wasco HMF Site: The Kern Council of Governments–Wasco HMF contains suitable habitat (e.g. riverine, lacustrine, pasture) for special-status wildlife, including
amphibians, reptiles, birds, mammals, and bats. Project effects on these species are presented in Table 3.7-12. Due to the presence of considerable amounts suitable habitat, the Kern Council of Governments–Wasco HMF would result in relatively high-intensity loss of special-status wildlife species. Therefore, the project effects of the Kern Council of Governments–Wasco HMF may result in an effect of substantial intensity under NEPA, and a significant impact under CEQA on special-status wildlife species.

Table 3.7-12
Special-Status Wildlife Species Potentially Affected by the HMF Alternatives during Project Operation

<table>
<thead>
<tr>
<th>HMF Alternatives</th>
<th>Vernal Pool Branchiopods</th>
<th>Valley Elderberry Longhorn Beetle</th>
<th>Fish</th>
<th>Amphibians</th>
<th>Reptiles</th>
<th>Birds*</th>
<th>Mammals</th>
<th>Bats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresno Works-Fresno</td>
<td>No Effect/No Impact</td>
<td>No Effect/No Impact</td>
<td>No Effect/No Impact</td>
<td>Negligible Effect/Less than Significant</td>
<td>Moderate Effect/Significant Impact</td>
<td>Moderate Effect/Significant Impact</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kings County–Hanford</td>
<td>No Effect/No Impact</td>
<td>No Effect/No Impact</td>
<td>No Effect/No Impact</td>
<td>Negligible Effect/Less than Significant</td>
<td>Substantial/Effect/Significant Impact</td>
<td>Substantial/Effect/Significant Impact</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KCOG–Wasco</td>
<td>No Effect/No Impact</td>
<td>No Effect/No Impact</td>
<td>No Effect/No Impact</td>
<td>Negligible Effect/Less than Significant</td>
<td>Substantial/Effect/Significant Impact</td>
<td>Substantial/Effect/Significant Impact</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KCOG–Shafter East</td>
<td>No Effect/No Impact</td>
<td>No Effect/No Impact</td>
<td>No Effect/No Impact</td>
<td>Negligible Effect/Less than Significant</td>
<td>Substantial/Effect/Significant Impact</td>
<td>Substantial/Effect/Significant Impact</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KCOG–Shafter West</td>
<td>No Effect/No Impact</td>
<td>No Effect/No Impact</td>
<td>No Effect/No Impact</td>
<td>Negligible Effect/Less than Significant</td>
<td>Substantial/Effect/Significant Impact</td>
<td>Substantial/Effect/Significant Impact</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NEPA/CEQA Significance Conclusion:
No Effect/No Impact
Negligible Effect/Less than Significant
Moderate Effect/Significant Impact
Substantial Effect/Significant Impact

*includes all migratory birds covered under MBTA
KCOG = Kern Council of Governments

Kern Council of Governments–Shafter East HMF Site: The Kern Council of Governments–Shafter East HMF contains suitable habitat (e.g. annual grassland, lacustrine, agricultural land) for special-status wildlife, including amphibians, reptiles, birds, mammals, and bats. Project effects on these species are presented in Table 3.7-12. Due to the presence of considerable amounts suitable habitat, the Kern Council of Governments–Shafter East HMF would result relatively high-intensity loss of special-status wildlife species. Therefore, the project impacts of the Kern Council of Governments–Shafter East HMF may result in an effect of substantial intensity under NEPA, and a significant impact under CEQA on special-status wildlife species.

Kern Council of Governments–Shafter West HMF Site: The Kern Council of Governments–Shafter West HMF contains suitable habitat (e.g. agricultural land) for special-status wildlife, including birds, mammals, and bats. Project effects on these species are presented in Table 3.7-12. Overall, Due to the presence of considerable amounts suitable habitat, the Kern Council of
Governments–Shafter West HMF may result in relatively high-intensity loss of special-status wildlife species. Therefore, the project effects of the Kern Council of Governments–Shafter West HMF would result in an effect of substantial intensity under NEPA, and a significant impact under CEQA on special-status wildlife species.

Station Alternatives

Table 3.7-13 lists special-status wildlife species potentially affected by the HST station alternatives and the potential for project impacts on the species. The conclusions presented in Table 3.7-13 are based on the presence or absence of terrestrial and aquatic habitat (Table 3.7-11) that would potentially be permanently affected by the HST station alternatives.

Table 3.7-13

<table>
<thead>
<tr>
<th>Station Alternatives</th>
<th>Vernal Pool Branchiopods</th>
<th>Valley Elderberry Longhorn Beetle</th>
<th>Fish</th>
<th>Amphibians</th>
<th>Reptiles</th>
<th>Birds*</th>
<th>Mammals</th>
<th>Bats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresno Station–Mariposa Alternative</td>
<td>No Effect/No Impact</td>
<td>No Effect/No Impact</td>
<td>No</td>
<td>Negligible Effect/Less than Significant</td>
</tr>
<tr>
<td>Kings/Tulare Regional Station – West</td>
<td>No Effect/No Impact</td>
<td>Negligible Effect/Less than Significant</td>
<td>No</td>
<td>Negligible Effect/Less than Significant</td>
<td>Moderate Effect/Significant Impact</td>
<td>Moderate Effect/Significant Impact</td>
<td>Moderate Effect/Significant Impact</td>
<td>Moderate Effect/Significant Impact</td>
</tr>
<tr>
<td>Kings/Tulare Regional Station – East</td>
<td>No Effect/No Impact</td>
<td>No Effect/No Impact</td>
<td>No Effect/No Impact</td>
<td>Negligible Effect/Less than Significant</td>
</tr>
<tr>
<td>Bakersfield Station-North</td>
<td>No Effect/No Impact</td>
<td>No Effect/No Impact</td>
<td>No</td>
<td>Negligible Effect/Less than Significant</td>
</tr>
<tr>
<td>Bakersfield Station-South</td>
<td>No Effect/No Impact</td>
<td>No Effect/No Impact</td>
<td>No</td>
<td>Negligible Effect/Less than Significant</td>
</tr>
<tr>
<td>Bakersfield Station-Hybrid</td>
<td>No Effect/No Impact</td>
<td>No Effect/No Impact</td>
<td>No</td>
<td>Negligible Effect/Less than Significant</td>
</tr>
</tbody>
</table>

NEPA/CEQA Significance Conclusion:

- No Effect/No Impact
- Negligible Effect/Less than Significant
- Moderate Effect/Significant Impact
- Substantial Effect/Significant Impact

* includes all migratory birds covered under MBTA

Fresno Station–Mariposa Alternative: The Fresno Station–Mariposa Alternative contains a small amount of suitable habitat (e.g., annual grassland, barren) for special-status wildlife species, including amphibians, reptiles, birds, mammals, and bats. Project impacts on these species are presented in Table 3.7-13. Due to the limited amount of suitable habitat present, the Fresno
Station–Mariposa Alternative would result in only a slight change from existing biological conditions and little to no regional effects. Therefore, the project impacts of the Fresno Station–Mariposa Alternative may result in an effect of negligible intensity under NEPA, and a less than significant impact under CEQA on special-status wildlife species.

Kings/Tulare Regional Station–West Alternative: The Kings/Tulare Regional Station–West Alternative contains of suitable habitat (e.g., annual grassland, valley foothill riparian, agricultural land) for special-status wildlife species, including amphibians, reptiles, birds, mammals, and bats. Project impacts on these species are presented in Table 3.7-13. Impacts on suitable habitat in the Kings/Tulare Regional Station–West Alternative may result in the loss of special-status wildlife species. Therefore, the project impacts of the Kings/Tulare Regional Station–West Alternative would result in an effect of moderate intensity under NEPA, and a significant impact under CEQA on special-status wildlife species.

Kings/Tulare Regional Station–East, Bakersfield Station–North, Bakersfield Station–South, and Bakersfield Station—Hybrid alternatives: These station alternatives contain only urban or agricultural land and therefore provide minimal marginal habitat for reptiles, birds, mammals, and bats. Project impacts on these species are presented in Table 3.7-13. Due to the limited amount of suitable habitat present, these alternatives may result in only a slight change from existing biological conditions and little to no regional effects. Therefore, the project impacts of these alternatives would result in an effect of negligible intensity under NEPA, and a less than significant impact under CEQA on special-status wildlife species.

Impact BIO#7 – Project Effects on Habitats of Concern

This section evaluates direct and indirect project impacts on habitats of concern (i.e., special-status plant communities, jurisdictional waters, conservation areas, and protected trees) that would result from project impacts associated with the HST alternatives. Appendix 3.7-B, Attachments 3 through 6, provide a comparison of impacts on habitats of concern by alternative.

The amount of habitat permanently converted during project-related activities varies among the HST alternatives. Where habitats of concern are present, the HST alternatives will result in either a negligible, moderate, or substantial effect depending on the quantity of the regulated habitat (e.g., jurisdictional waters, conservation areas).

Direct BIO#7 Project Impacts

Direct impacts include the permanent conversion of special-status plant communities, jurisdictional waters, conservation areas, and conservation trees. Direct project impacts on habitats of concern would result from the operation period including the construction of the various permanent project components (e.g., embankments, rail bed, road overcrossings, and aerial structure footings).

Impacts on special-status plant communities would include the permanent removal of vegetation from within the construction footprint, and the disturbance (i.e., trampling or crushing) of plants due to an increase of pedestrian access/activity in the area. Ongoing operation and maintenance activities would also occur (e.g., routine inspection and maintenance of the HST right-of-way) and would similarly involve disturbance from trampling or crushing of native vegetation by vehicle or foot traffic.

Project impacts would require the use of heavy machinery to recontour the landscape and place permanent fill materials (such as culverts, dirt, and/or engineering structures) in both man-made jurisdictional waters (e.g., basins, canals/ditches) and natural features (e.g., wetlands, river beds, and riparian corridors). The contouring and placement of fill in jurisdictional waters would result in the permanent loss of jurisdictional waters; irreversible impacts on the physical,
chemical, and biological characteristics of aquatic substrates and food webs; and a potential increase in erosion and sediment transport into adjacent aquatic areas.

Construction material that may be placed in jurisdictional waters includes imported well-graded soils, sub-ballast (coarse-grained material), ballast (crushed stone), and slab (concrete). Culverts placed in jurisdictional waters would be constructed of pre-cast reinforced concrete pipe, or concrete box culverts. At bridge and elevated structure locations, cast-in-place or precast reinforced concrete girders or piles may be placed in jurisdictional waters. Other materials would be used during project activities but are not expected to be placed in jurisdictional waters. The origin of these materials has yet to be determined, but would be supplied by local sources and from existing permitted quarries, to the extent practicable. Fill material would be suitable for construction purposes and free from toxic pollutants in toxic amounts in accordance with Section 307 of the Clean Water Act.

Direct impacts on jurisdictional waters (i.e., natural and man-made features) would also include the removal or modification of local hydrology and the redirection of flow within jurisdictional waters. In the case of man-made features, these impacts would remove or disrupt the limited biological functions that these features provide. In natural areas, these activities would remove or disrupt the hydrology, vegetation, wildlife use, water quality conditions, and other biological functions provided by the resources. Additional discussions specific to impacts on major surface water features are also provided in the Section 3.8, Hydrology and Water Resources (see Section 3.8.5.3, Common Surface Water Impacts).

Permanent impacts on jurisdictional waters would occur during construction of bridges and viaducts over biological resources such as rivers or creeks (e.g., Kings River, Dutch John Slough, Cole Slough, Cross Creek, Tule River, Deer Creek, and Kern River) and wetlands, as well as man-made ditches and basins. Permanent impacts would result from the shading of jurisdictional waters by elevated structures (where the aerial structure is near the ground), from the placement of piles to support the aerial structures and bridges, and from the permanent removal of vegetation.

Many of the jurisdictional waters (canal/ditches, and seasonal riverine) are heavily managed by local irrigation districts, which serve public water needs, and agricultural production. As a result, these jurisdictional waters support few natural biological functions and values. The biological functions of these man-made features include limited habitat for wildlife, and capacity for water storage and/or release. A number of these jurisdictional waters have been previously degraded or affected by various existing roads and BNSF infrastructure. The construction of the HST alternatives would eliminate or further degrade these man-made jurisdictional waters.

Project direct impacts on federal recovery plan areas include the creation of permanent partial or total movement barriers to special-status species, the loss or degradation of special-status plant and wildlife species, and the loss or degradation of the lands that could support or provide habitat for these species.

Project activities could directly affect biological resources associated within the Allensworth ER as described in Section 3.7.5(C), High-Speed Train Alternatives, Construction Period Impacts, Special-Status Plant Species), in 3.7.5(C) (Construction Period Impacts, Special-Status Wildlife Species), and in the discussions of jurisdictional waters in Section 3.7.5(C) (Construction Period Impacts, Habitats of Concern). However, because of the proximity to existing linear features (e.g., BNSF and SR 43), biological resources are likely to be only indirectly affected for the most part.

Project activities could interfere with, disturb, or conflict with the objectives, goals, and/or provisions of the MBHCP and could, therefore, result in a direct impact on this plan.
Construction of the HST project would result in the permanent removal or modification of trees within the construction footprint, which could conflict with the objectives, goals, and/or provisions identified in approved local, regional, or state conservation plans. Where the alignment is located at-grade, removal or trimming of all protected trees is anticipated. In urban areas where the majority of the landscaped ornamental trees are located and where the alignment is on an elevated structure, trimming and limited removal of protected trees would occur.

Indirect BIO#7 Project Impacts

Indirect impacts would include contamination of habitats of concern outside the construction footprint from increased erosion, sedimentation, siltation, and runoff due to alterations in topography and hydrology; wind erosion effects (including from unvegetated rights-of-way and passing high-speed trains); an increased risk of fire in adjacent open spaces due to increased human activity; and the introduction of noxious plant species from increased human activity/disturbance.

Permanent indirect project impacts on sensitive biological communities would include fragmentation and introduction of nonnative, invasive plant species. These changes would result in decreased viability and gradual loss of sensitive biological communities. Fragmentation would result from the construction of permanent features, especially linear features, including track that bisects sensitive biological communities. Project activities could facilitate the spread of nonnative, invasive plant species through introduction of seeds by construction equipment, vehicles, and personnel, and could provide ample habitat for colonization where permanent ground-disturbing activities occurred.

Potential indirect impacts on jurisdictional waters include a number of temporary construction-related impacts and project period water-quality-related impacts: erosion, siltation, and runoff into natural and constructed water features and fill downstream of the construction footprint. In addition, permanent changes within the HST alternatives would also result in changes in hydrology. For many of the man-made features these indirect impacts would be minor, and hydrologic changes would be minimal. However, for natural features such as seasonal wetlands, and vernal pools and swales (located outside the project footprint) the changes may result in changes in the natural hydrological regime. In some areas the hydroperiod may be either reduced or extended where sheet flow is limited. Indirect impacts on seasonal riverine and riparian areas include the changes in water temperature through the removal of the riparian trees that provide shade, shading of open water, and reduced contribution to and ability to recycle nutrients. These indirect impacts would adversely affect adjacent or downstream jurisdictional waters up to 250 feet from the project disturbances.

Portions of vernal pools and swales that abut but occur outside of either side of the project footprint are categorized and identified as “indirect-bisected” impacts. Given the highly sensitive nature of these features, indirect-bisected impacts on vernal pools and swales are reported separately in this analysis. These indirect-bisected impacts will be mitigated in a manner similar to the direct impacts per USACE guidance. These features are sensitive to disturbance; therefore, indirect-bisected impacts could result in either significant changes in the hydrological regime, or complete and permanent loss, as a result of drilling, excavation, or other activities that occur within the footprint. These impacts would potentially alter the surface and subsurface water flow within the watershed, affecting the hardpan, volume, and flow direction. Because these impacts would not result from the direct removal or placement of fill material, and are more severe than other indirect impacts described above, these indirect-bisected impacts would adversely affect adjacent or downstream sensitive jurisdictional waters up to 250 feet from project disturbances.

Project indirect impacts on federal recovery plan areas include fragmentation of satellite areas and linkages where recovery areas are crossed by permanent construction activities and
disturbance of natural lands within recovery areas, which reduces habitat value for species recovery.

Project indirect impacts on Allensworth ER would be similar to those described in Section 3.7.5.3, High-Speed Train Alternatives, Construction Period Impacts, Special-Status Plant Species; in Section 3.7.5.3, High-Speed Train Alternatives, Construction Period Impacts, Special-Status Wildlife Species; and in the discussions of jurisdictional waters in Section 3.7.5.3, High-Speed Train Alternatives, Construction Period Impacts, Habitats of Concern.

BNSF Alternative

Special-Status Plant Communities

Eight special-status plant communities would be affected by this alternative: iodine bush scrub, alkali goldenbush scrub, bush seepweed scrub, saltgrass flats, Fremont cottonwood forest, black willow thickets, red willow thickets, and valley foothill riparian (Appendix 3.7-B, Attachment 3). In addition to the special-status plant communities that have been observed, a number of special-status plant communities have the potential to occur in natural areas. Direct and indirect project impacts would occur during project activities associated with the BNSF Alternative and result in the permanent disturbance of these special-status plant communities (Appendix 3.7-B, Attachment 3). Impacts on special-status plant communities would occur as described above under the direct and indirect impacts for habitats of concern.

The magnitude of impacts on special-status plant communities of the BNSF Alternative would result in relatively high-intensity loss to these communities. Therefore, the project impacts of the BNSF Alternative would result in an effect of substantial intensity under NEPA, on special-status plant communities. The impact would be significant under CEQA.

Jurisdictional Waters

Wetlands and other waters, including seasonal wetlands, vernal pools and swales, canals/ditches, lacustrine features, and seasonal riverine features, are present throughout the BNSF Alternative. Direct and indirect impacts would occur during construction of the BNSF Alternative, resulting in the permanent disturbance of jurisdictional waters (Table 3.7-14 and Table 3.7-15).

Because of the sensitivity of vernal pools and swales, all impacts on these features are considered permanent. Furthermore, where these features extend beyond the project footprint, the entire feature is considered to be permanently affected (out to 250 feet).

Elevated sections of the BNSF Alternative will span existing seasonal riverine features including the Cross Creek, Tule River, Deer Creek, and Kern River. Where at-grade profiles are proposed over seasonal riverine features, bridge structures would be constructed across the Kings River Complex, and Poso Creek. Both at-grade (bridges) and elevated structures will result in direct and indirect impacts on seasonal riverine features. Additional discussions specific to impacts on major surface water features are provided in the Section 3.8, Hydrology and Water Resources (see Section 3.8.5.3, Common Surface Water Impacts).

The considerable impacts of the BNSF Alternative on jurisdictional waters, including impacts on natural features, would result in relatively high-intensity loss of these resources and influential regional effects. Therefore, the project impacts of the BNSF Alternative would result in an effect of substantial intensity under NEPA, due to impacts on jurisdictional waters. The impact would be significant under CEQA.
Table 3.7-14
Comparison of Project Impacts on Jurisdictional Waters by Alternative

<table>
<thead>
<tr>
<th>HST Jurisdictional Waters</th>
<th>Impact Type</th>
<th>BNSF Impact Acreage</th>
<th>Hanford West Bypass 1</th>
<th>Hanford West Bypass 2</th>
<th>Hanford West Bypass 2 Modified</th>
<th>Corcoran Elevated</th>
<th>Corcoran Bypass</th>
<th>Allensworth Bypass</th>
<th>Wasco-Shafter Bypass</th>
<th>Bakersfield South</th>
<th>Bakersfield Hybrid</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Project</td>
<td>- / -0.01</td>
<td>- / -0.01</td>
<td>- / -0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indirect</td>
<td>- / -0.6</td>
<td>0.7 / +0.09</td>
<td>1.75 / +1.15</td>
<td>2.59 / +1.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emergent wetland</td>
<td></td>
<td>Project</td>
<td>0.01</td>
<td>- / -0.01</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indirect</td>
<td>0.60</td>
<td>0.7 / +0.09</td>
<td>1.75 / +1.15</td>
<td>2.59 / +1.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seasonal wetland</td>
<td></td>
<td>Project</td>
<td>4.54</td>
<td>0.27 / +0.27</td>
<td>0.41 / +0.41</td>
<td>2.68 / +2.29</td>
<td>6.68 / -0.44</td>
<td>1.72 / -5.41</td>
<td>8.69 / -40.51</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indirect</td>
<td>67.41</td>
<td>2.26 / +1.87</td>
<td>2.67 / +2.28</td>
<td>6.68 / -0.44</td>
<td>1.72 / -5.41</td>
<td>8.69 / -40.51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vernal pools and swales</td>
<td></td>
<td>Project</td>
<td>12.24</td>
<td>2.26 / +1.87</td>
<td>2.67 / +2.28</td>
<td>6.68 / -0.44</td>
<td>1.72 / -5.41</td>
<td>8.69 / -40.51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indirect</td>
<td>12.24</td>
<td>2.26 / +1.87</td>
<td>2.67 / +2.28</td>
<td>6.68 / -0.44</td>
<td>1.72 / -5.41</td>
<td>8.69 / -40.51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Project</td>
<td>12.24</td>
<td>2.26 / +1.87</td>
<td>2.67 / +2.28</td>
<td>6.68 / -0.44</td>
<td>1.72 / -5.41</td>
<td>8.69 / -40.51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indirect</td>
<td>12.24</td>
<td>2.26 / +1.87</td>
<td>2.67 / +2.28</td>
<td>6.68 / -0.44</td>
<td>1.72 / -5.41</td>
<td>8.69 / -40.51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canals/Ditches</td>
<td></td>
<td>Project</td>
<td>14.60</td>
<td>2.26 / +1.87</td>
<td>2.67 / +2.28</td>
<td>6.68 / -0.44</td>
<td>1.72 / -5.41</td>
<td>8.69 / -40.51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indirect</td>
<td>14.60</td>
<td>2.26 / +1.87</td>
<td>2.67 / +2.28</td>
<td>6.68 / -0.44</td>
<td>1.72 / -5.41</td>
<td>8.69 / -40.51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Project</td>
<td>14.60</td>
<td>2.26 / +1.87</td>
<td>2.67 / +2.28</td>
<td>6.68 / -0.44</td>
<td>1.72 / -5.41</td>
<td>8.69 / -40.51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indirect</td>
<td>14.60</td>
<td>2.26 / +1.87</td>
<td>2.67 / +2.28</td>
<td>6.68 / -0.44</td>
<td>1.72 / -5.41</td>
<td>8.69 / -40.51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Project</td>
<td>51.85</td>
<td>2.26 / +1.87</td>
<td>2.67 / +2.28</td>
<td>6.68 / -0.44</td>
<td>1.72 / -5.41</td>
<td>8.69 / -40.51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indirect</td>
<td>51.85</td>
<td>2.26 / +1.87</td>
<td>2.67 / +2.28</td>
<td>6.68 / -0.44</td>
<td>1.72 / -5.41</td>
<td>8.69 / -40.51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Project</td>
<td>51.85</td>
<td>2.26 / +1.87</td>
<td>2.67 / +2.28</td>
<td>6.68 / -0.44</td>
<td>1.72 / -5.41</td>
<td>8.69 / -40.51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indirect</td>
<td>51.85</td>
<td>2.26 / +1.87</td>
<td>2.67 / +2.28</td>
<td>6.68 / -0.44</td>
<td>1.72 / -5.41</td>
<td>8.69 / -40.51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Project</td>
<td>6.56</td>
<td>2.26 / +1.87</td>
<td>2.67 / +2.28</td>
<td>6.68 / -0.44</td>
<td>1.72 / -5.41</td>
<td>8.69 / -40.51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indirect</td>
<td>6.56</td>
<td>2.26 / +1.87</td>
<td>2.67 / +2.28</td>
<td>6.68 / -0.44</td>
<td>1.72 / -5.41</td>
<td>8.69 / -40.51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Project</td>
<td>6.56</td>
<td>2.26 / +1.87</td>
<td>2.67 / +2.28</td>
<td>6.68 / -0.44</td>
<td>1.72 / -5.41</td>
<td>8.69 / -40.51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indirect</td>
<td>6.56</td>
<td>2.26 / +1.87</td>
<td>2.67 / +2.28</td>
<td>6.68 / -0.44</td>
<td>1.72 / -5.41</td>
<td>8.69 / -40.51</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
— = No impact or not applicable

* Indirect impacts are calculated within a 250-foot buffer of the project footprint, which includes areas of permanent and temporary impacts.

The “Difference Compared to Corresponding BNSF Area” represents the difference in impact acreages between an alternative alignment and its corresponding segment in the BNSF Alternative: positive (+) differences indicate that the alternative alignment results in greater impact acres than its corresponding segment in the BNSF Alternative; negative (-) differences indicate that the alternative alignment results in fewer impact acres than its corresponding segment in the BNSF Alternative.

The impact calculations in this table include alignment alternatives and station alternatives, but do not include HMF alternatives.

All impacts were calculated based on 15% engineering design construction footprint.
Table 3.7-15
Comparison of Project Impacts on Jurisdictional Waters by Quality and Alternative

<table>
<thead>
<tr>
<th>Relative Condition</th>
<th>Type of Aquatic Features</th>
<th>BNSF Impact Acreage</th>
<th>Hanford West Bypass 1</th>
<th>Hanford West Bypass 1 Modified</th>
<th>Hanford West Bypass 2</th>
<th>Hanford West Bypass 2 Modified</th>
<th>Corcoran Elevated</th>
<th>Corcoran Bypass</th>
<th>Allensworth Bypass</th>
<th>Wasco-Shafter Bypass</th>
<th>Bakersfield South</th>
<th>Bakersfield Hybrid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct-Permanent Impacts</td>
<td></td>
</tr>
<tr>
<td>Poor</td>
<td>Seasonal wetland, Vernal Pools and Swales, Canals/Ditches, Lacustrine, Seasonal riverine</td>
<td>113.42</td>
<td>17.33 / +2.26</td>
<td>37.74 / +22.67</td>
<td>16.96 / +1.89</td>
<td>20.54 / +5.47</td>
<td>28.11 / +3.86</td>
<td>14.19 / 10.05</td>
<td>38.23 / +4.26</td>
<td>7.92 / +3.45</td>
<td>10.76 / +4.1</td>
<td></td>
</tr>
<tr>
<td>Fair</td>
<td>Seasonal wetland, Vernal Pools and Swales, Lacustrine, Seasonal riverine</td>
<td>10.59</td>
<td>0.43 / 1.63</td>
<td>0.43 / 1.63</td>
<td>0.56 / 1.51</td>
<td>0.54 / 1.53</td>
<td>1.48 / 1.73</td>
<td>1.15 / 1.73</td>
<td>1.54 / 1.73</td>
<td></td>
<td>0 / -0.01</td>
<td>0 / -0.01</td>
</tr>
<tr>
<td>Good</td>
<td>Vernal Pools and Swales, Canals/Ditches, Seasonal riverine</td>
<td>15.55</td>
<td>0.27 / 0.45</td>
<td>0.27 / 0.45</td>
<td>0.27 / 0.45</td>
<td>0.27 / 0.45</td>
<td>0.01 / 0.01</td>
<td></td>
<td>4.71 / 7.89</td>
<td></td>
<td>1.86 / 1.86</td>
<td>1.86 / 1.86</td>
</tr>
<tr>
<td>Excellent</td>
<td>Vernal Pools and Swales</td>
<td>0.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 / -0.03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indirect-Bisected Impacts</td>
<td></td>
</tr>
<tr>
<td>Poor</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Fair</td>
<td>Vernal Pools and Swales</td>
<td>4.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.88 / 2.57</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Good</td>
<td>Vernal Pools and Swales</td>
<td>9.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9.66 / 0.18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excellent</td>
<td>Vernal Pools and Swales</td>
<td>0.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.7-15
Comparison of Project Impacts on Jurisdictional Waters by Quality and Alternative

<table>
<thead>
<tr>
<th>Relative Condition</th>
<th>Type of Aquatic Features</th>
<th>BNSF Impact Acreage</th>
<th>Hanford West Bypass 1</th>
<th>Hanford West Bypass 1 Modified</th>
<th>Hanford West Bypass 2</th>
<th>Hanford West Bypass 2 Modified</th>
<th>Corcoran Elevated</th>
<th>Corcoran Bypass</th>
<th>Allensworth Bypass</th>
<th>Wasco-Shafter Bypass</th>
<th>Bakersfield South</th>
<th>Bakersfield Hybrid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poor</td>
<td>Emergent wetland, Seasonal wetland, Vernal Pools and Swales, Canals/Ditches, Lacustrine, Seasonal riverine</td>
<td>241.46</td>
<td>35.23 / -7.51</td>
<td>70.43 / +27.69</td>
<td>33.53 / -9.21</td>
<td>67.73 / +24.99</td>
<td>28.57 / +6.95</td>
<td>29.53 / +7.9</td>
<td>135.79 / +27.24</td>
<td>9.54 / -10.68</td>
<td>15.82 / -1.97</td>
<td>16.14 / -1.65</td>
</tr>
<tr>
<td>Fair</td>
<td>Emergent wetland, Seasonal wetland, Vernal Pools and Swales, Canals/Ditches, Lacustrine, Seasonal riverine</td>
<td>84.88</td>
<td>3.23 / -6.34</td>
<td>3.91 / -5.66</td>
<td>3.46 / -6.1</td>
<td>4.3 / -5.27</td>
<td>8.51 / -0.27</td>
<td>2.68 / -6.1</td>
<td>11.53 / -43.88</td>
<td>0.73 / +0.12</td>
<td>0.73 / +0.12</td>
<td></td>
</tr>
<tr>
<td>Good</td>
<td>Emergent wetland, Vernal Pools and Swales, Canals/Ditches, Seasonal riverine</td>
<td>41.08</td>
<td>4.76 / -6.59</td>
<td>4.76 / -6.59</td>
<td>6.52 / -4.84</td>
<td>6.52 / -4.84</td>
<td>0.01 / +0.01</td>
<td>9.27 / -0.87</td>
<td>13.33 / -6.26</td>
<td>13.33 / -6.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excellent</td>
<td>Vernal Pools and Swales</td>
<td>1.30</td>
<td>=</td>
<td>=</td>
<td>=</td>
<td>=</td>
<td>=</td>
<td>=</td>
<td>0 / -1.3</td>
<td>=</td>
<td>=</td>
<td></td>
</tr>
</tbody>
</table>

Totals

	Total Poor	354.88	52.56 / -5.25	108.17 / +50.36	50.48 / -7.32	88.26 / +30.45	56.68 / +10.82	43.72 / -1.15	174.03 / +31.5	17.45 / +10.7	25.94 / +1.48	26.91 / +2.45
	Total Fair	99.93	3.66 / -7.97	4.34 / -7.29	4.02 / -7.61	4.84 / -6.79	9.99 / -1.66	3.82 / -7.83	14.95 / +49.45	0.73 / +0.11	0.73 / +0.11	
	Total Good	66.48	5.03 / -7.04	5.03 / -7.04	6.79 / -5.29	6.79 / -5.29	0.01 / 0.01	0.01 / 0.01	23.64 / -8.94	15.19 / -6.63	15.19 / -6.63	
	Total Excellent	1.63	=	=	=	=	=	=	0 / -1.63	=	=	

*Indirect Impacts

1. Poor
2. Fair
3. Good
4. Excellent
Table 3.7-15
Comparison of Project Impacts on Jurisdictional Waters by Quality and Alternative

<table>
<thead>
<tr>
<th>Relative Condition</th>
<th>Type of Aquatic Features</th>
<th>BNSF Impact Acreage</th>
<th>Hanford West Bypass 1</th>
<th>Hanford West Bypass 1 Modified</th>
<th>Hanford West Bypass 2</th>
<th>Hanford West Bypass 2 Modified</th>
<th>Corcoran Elevated</th>
<th>Corcoran Bypass</th>
<th>Allensworth Bypass</th>
<th>Wasco-Shafter Bypass</th>
<th>Bakersfield South</th>
<th>Bakersfield Hybrid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notes:</td>
<td></td>
</tr>
<tr>
<td>- = No impact or not applicable</td>
<td></td>
</tr>
<tr>
<td>Notes:</td>
<td></td>
</tr>
<tr>
<td>a The “Difference Compared with Corresponding BNSF Area” represents the difference in impact acreages between an alternative alignment and its corresponding segment in the BNSF Alternative: positive (+) differences indicate that the alternative alignment results in a larger number of impact acres than its corresponding segment in the BNSF Alternative; negative (-) differences indicate that the alternative alignment results in a smaller number of impact acres than its corresponding segment in the BNSF Alternative.</td>
<td></td>
</tr>
<tr>
<td>Notes:</td>
<td></td>
</tr>
<tr>
<td>Notes:</td>
<td></td>
</tr>
<tr>
<td>All impacts were calculated based on the 15% engineering design construction footprint.</td>
<td></td>
</tr>
</tbody>
</table>
Conservation Areas

Recovery Plans
The BNSF Alternative overlaps the Recovery Plan for Upland Species of the San Joaquin Valley, California (USFWS 1998). A portion of the BNSF Alternative occurs in satellite and linkage areas identified in the recovery plan. Project activities associated with the BNSF Alternative would result in permanent impacts on the recovery plan areas identified in the Recovery Plan for Upland Species of the San Joaquin Valley, California (Appendix 3.7-B, Attachment 5).

Due to the large area of impact, the BNSF Alternative would result in relatively high-intensity loss of recovery plan areas. Therefore, the project impacts of the BNSF Alternative would result in an effect of substantial intensity on recovery plans under NEPA and a significant impact under CEQA.

Allensworth Ecological Reserve
The BNSF Alternative in southern Tulare County would overlap the eastern boundary of the Allensworth ER. Project activities associated with the BNSF Alternative would result in permanent disturbance to the Allensworth ER (Appendix 3.7-B, Attachment 5). Due to these impacts, the BNSF Alternative would result in relatively high-intensity loss of the Allensworth ER, which would have influential regional effects. Therefore, the project impacts on the BNSF Alternative would result in an effect of substantial intensity on the Allensworth ER under NEPA and a significant impact under CEQA.

Habitat Conservation Plans
The BNSF Alternative overlaps with the MBHCP. Project activities on the BNSF Alternative would result in permanent impacts within the habitat conservation plan area (Appendix 3.7-B, Attachment 5).

Project impacts under the BNSF Alternative do not conflict with the provisions of the MBHCP because proposed mitigation ratios are similar to the “adequate mitigation” ratios presented in the plan. Also, the BNSF Alternative does not overlap with the conceptual focus areas identified as potential preserve areas. Therefore, the project impacts under the BNSF Alternative would result in no effect on habitat conservation plans under NEPA, and no impact under CEQA.

Protected Trees
Trees, including those regulated by various local government regulations, are present along the BNSF Alternative (Appendix 3.7-B, Attachment 6), and project impacts would both alter and remove some portion of these resources. The majority of protected trees are located in Fresno, and almost all of the native oaks are in the vicinity of the Kings River. Protected riparian trees associated with the Kern River are also located in the City of Bakersfield. Direct and indirect project impacts would occur in association with the BNSF Alternative, resulting in the permanent disturbance of these protected trees.

The anticipated removal and trimming of protected trees (both native and landscape ornamentals) as part of construction of permanent project impacts in all four counties of the Fresno to Bakersfield Section would be in conflict with the city and county ordinances. Due to the considerable number of protected trees that would be affected, the BNSF Alternative would result in relatively high-intensity loss of that resource. Therefore, the project impacts of the BNSF Alternative would result in an effect of substantial intensity on protected trees under NEPA and a significant impact under CEQA.
Hanford West Bypass 1 and Hanford West Bypass 1 Modified Alternatives

Special-Status Plant Communities

Field surveys identified two special-status plant communities in the Hanford West Bypass 1 Alternative footprints: bush seepweed scrub and valley foothill riparian habitat (Appendix 3.7-B, Attachment 3). In the Hanford West Bypass 1 Modified Alternative, only valley foothill riparian habitat has been identified. Additional unsurveyed habitats that have the potential to support special-status plant communities, including annual grasslands, could also support special-status plant communities. Permanent impacts would occur in identified special-status plant communities (i.e., valley foothill riparian) in the footprints of both the Hanford West Bypass 1 Alternative and the Hanford West Bypass 1 Modified Alternative. Permanent impacts would also occur in unsurveyed habitats that have the potential to support special-status plant communities. Impacts on special-status plant communities would occur as described above under the direct and indirect impacts for habitats of concern.

The Hanford West Bypass 1 Alternative would result in slightly more permanent impacts on bush seepweed scrub than the Hanford West Bypass 1 Modified Alternative or its corresponding segment of the BNSF Alternative (Appendix 3.7-B, Attachment 3). Both the Hanford West Bypass 1 and Hanford West Bypass 1 Modified alternatives would result in more permanent impacts on valley foothill riparian and unsurveyed habitats that have the potential to support special-status plant communities than their corresponding segment of the BNSF Alternative (Appendix 3.7-B, Attachment 3; Table 3.7-9).

The impacts of the Hanford West Bypass 1 and Hanford West Bypass 1 Modified alternatives on special-status plant communities and unsurveyed habitats that have the potential to support special-status plant communities would result in measurable loss of these resources. Therefore, the project impacts of the Hanford West Bypass 1 alternatives would result in an effect of moderate intensity under NEPA, and a significant impact under CEQA on special-status plant communities.

Jurisdictional Waters

Wetlands and other waters present in the footprint of the Hanford West Bypass 1 alternatives include emergent and seasonal wetlands, canals/ditches, lacustrine features, and seasonal riverine (Table 3.7-14; Table 3.7-15; Appendix 3.7-B, Attachments 4 and 5). Direct and indirect impacts on natural jurisdictional waters and man-made features (e.g., canals/ditches, and lacustrine features) would occur during project-related activities under the Hanford West Bypass 1 alternatives, resulting in the permanent disturbance of these jurisdictional waters.

Both of the Hanford West Bypass 1 alternatives and the corresponding segment of the BNSF Alternative are in a rural setting dominated by agricultural land uses. The majority of the jurisdictional waters in the Hanford West Bypass 1 alternatives and corresponding BNSF Alternative segment are man-made and in poor ecological condition, with the exception of the Kings River complex, other seasonal riverine features, and seasonal wetlands, which are in fair to good ecological condition (Table 3.7-15). The Hanford West Bypass 1 alternatives would increase the direct impacts on canals/ditches when compared with the corresponding segment of the BNSF Alternative (Table 3.7-14; Appendix 3.7-B, Attachment 4). However, the Hanford West Bypass 1 alternatives would result in fewer direct and indirect impacts on other man-made features and on seasonal riverine (including the Kings River complex) than the corresponding segment of the BNSF Alternative. Also, the Hanford West Bypass 1 alternatives would be constructed on an elevated structure above the Kings River complex, while the corresponding segment of the BNSF Alternative would be constructed at-grade and would cross the various seasonal riverine features with bridge structures. Overall, indirect impacts as a result of both
construction and project activities on the Hanford West Bypass 1 alternatives would be less than those associated with the corresponding segment of the BNSF Alternative.

The direct impacts associated with the Hanford West Bypass 1 Alternative and the Hanford West Bypass 1 Modified Alternative are similar. However, both Hanford West Bypass 1 alternatives would increase indirect impacts on wetlands and decrease impacts on seasonal riverine features when compared with the corresponding segment of the BNSF Alternative.

Impacts of the Hanford West Bypass 1 alternatives on jurisdictional waters would result in relatively high-intensity loss of these resources due to the magnitude of the impact. Therefore, the project impacts under the Hanford West Bypass 1 alternatives would result in an effect of substantial intensity under NEPA and a significant impact under CEQA on jurisdictional waters.

Conservation Areas

Recovery Plans
Neither of the Hanford West Bypass 1 alternatives nor the corresponding segment on the BNSF Alternative overlaps the *Recovery Plan for Upland Species of the San Joaquin Valley, California* (USFWS 1998) (Appendix 3.7-B, Attachment 5). Therefore, no permanent direct or indirect impacts on the plan area would occur as a result of either of these alternatives.

Project impacts of the Hanford West Bypass 1 alternatives would result in no effect under NEPA, and no impact under CEQA on recovery plans.

Allensworth Ecological Reserve
Neither of the Hanford West Bypass 1 alternatives nor the corresponding segment on the BNSF Alternative overlaps the Allensworth ER (Appendix 3.7-B, Attachment 5). Therefore, no permanent direct or indirect impacts on the Allensworth ER would occur as a result of project activities associated with either of these alternatives.

Project impacts of the Hanford West Bypass 1 alternatives would result in no effect under NEPA, and no impact under CEQA on Allensworth ER.

Habitat Conservation Plans
Neither of the Hanford West Bypass 1 alternatives nor the corresponding segment in the BNSF Alternative overlaps the plan area of the MBHCP (Appendix 3.7-B, Attachment 5). Therefore, no permanent direct or indirect impacts within the MBHCP plan area would occur as a result of the project impacts of either of these alternatives.

Project impacts of the Hanford West Bypass 1 alternatives would result in no effect under NEPA, and no impact under CEQA on habitat conservation plans.

Protected Trees
Trees that may be regulated under Fresno County General Plan and/or the Kings County General Plan are present in both the Hanford West Bypass 1 alternatives and the corresponding segment of the BNSF Alternative (Appendix 3.7-B, Attachment 6). Project activities would both alter and remove some portion of these resources.

Project impacts on protected trees under the Hanford West Bypass 1 alternatives would result in an increase in the number of trees disturbed compared to the construction of the corresponding segment of the BNSF Alternative.
Project impacts under the Hanford West Bypass 1 Modified Alternative would result in an increase in the number of trees disturbed compared to the corresponding segment of the Hanford West Bypass 1 Alternative.

Due to the number of protected trees that would be affected, the Hanford West Bypass 1 alternatives would result in relatively high-intensity loss of this resource. Therefore, the project impacts of the Hanford West Bypass 1 alternatives would result in an effect of substantial intensity under NEPA and a significant impact under CEQA on protected trees because of the direct and indirect impacts associated with the BNSF Alternative.

Hanford West Bypass 2 and Hanford West Bypass 2 Modified Alternatives

Special-Status Plant Communities

Field surveys identified valley foothill riparian within the Hanford West Bypass 2 alternatives. Special-status plant communities may occur in unsurveyed habitats that have the potential to support special-status plant communities within this alternative (Appendix 3.7-B, Attachment 3). Impacts on special-status plant communities would occur as described above in the discussion of the direct and indirect impacts for habitats of concern.

Selection of either of the Hanford West Bypass 2 alternatives would result in substantially greater permanent impacts on unsurveyed habitats potentially suitable for special-status plant communities when compared with the corresponding BNSF Alternative segment (Appendix 3.7-B, Attachment 3). The Hanford West Bypass 2 alternatives would have slightly more permanent impacts than the corresponding segment of the BNSF Alternative on valley foothill riparian (Table 3.7-9).

Impacts of the Hanford West Bypass 2 alternatives would result in the loss of special-status plant communities. Therefore, the project impacts of the Hanford West Bypass 2 alternatives would result in an effect of moderate intensity under NEPA, and a significant impact under CEQA on special-status plant communities.

Jurisdictional Waters

Wetlands and other waters present in the footprint of the Hanford West Bypass 2 alternatives include emergent and seasonal wetlands, canals/ditches, lacustrine features, and seasonal riverine (Table 3.7-14; Table 3.7-15; Appendix 3.7-B, Attachments 4 and 5). Direct and indirect impacts on natural jurisdictional waters and man-made features (e.g., canals/ditches, and lacustrine features) would occur during project activities under the Hanford West Bypass 2 alternatives, resulting in the permanent disturbance of these jurisdictional waters.

Both the Hanford West Bypass 2 alternatives and corresponding segment of the BNSF Alternative are located in a rural setting dominated by agricultural land uses. The majority of the jurisdictional waters in the Hanford West Bypass 2 alternatives and corresponding BNSF Alternative segment are man-made and in poor ecological condition, with the exception of the Kings River complex, other seasonal riverine features, and seasonal wetlands, which are in fair to good ecological condition (Table 3.7-15). The Hanford West Bypass 2 Modified Alternative would slightly increase the direct impacts on man-made jurisdictional waters when compared with the corresponding segment of the BNSF Alternative and the Hanford West Bypass 2 Alternative would slightly decrease impacts (Table 3.7-14; Appendix 3.7-B, Attachment 4). Direct and indirect impacts on seasonal riverine (including the Kings River complex) would decrease under Hanford West Bypass 2 alternatives when compared to the corresponding segment of the BNSF Alternative.
Also, the Hanford West Bypass 2 alternatives would be constructed on an elevated structure above the Kings River complex, while the corresponding BNSF Alternative would be constructed at-grade and cross the various seasonal riverine features with bridge structures. Overall, indirect impacts on jurisdictional waters associated with the Hanford West Bypass 2 alternatives would slightly increase compared to the corresponding segment of the BNSF Alternative, as a result of both construction and project activities combined.

The direct impacts associated with the Hanford West Bypass 2 Alternative and the Hanford West Bypass 2 Modified Alternative are similar. However, the Hanford West Bypass 2 Modified Alternative would increase direct impacts on wetlands and seasonal riverine features compared to the Hanford West Bypass 2 Alternative.

The impacts of the Hanford West Bypass 2 alternatives on jurisdictional waters would result in relatively high-intensity loss of these resources due to the magnitude of the impact. Therefore, the project impacts under the Hanford West Bypass 2 alternatives would result in an effect of substantial intensity under NEPA, and a significant impact under CEQA on jurisdictional waters.

Conservation Areas

Recovery Plans

Neither of the Hanford West Bypass 2 alternatives nor the corresponding segment of the BNSF Alternative overlaps the [Recovery Plan for Upland Species of the San Joaquin Valley, California](#) (Appendix 3.7-B, Attachment 5). Therefore, no permanent direct or indirect impacts on the plan area would occur as a result of either of these alternatives.

Project impacts of the Hanford West Bypass 2 alternatives would result in no effect under NEPA, and no impact under CEQA on recovery plans.

Allensworth Ecological Reserve

Neither of the Hanford West Bypass 2 alternatives nor the corresponding segment in the BNSF Alternative overlaps the Allensworth ER (Appendix 3.7-B, Attachment 5). Therefore, no permanent direct or indirect impacts on the Allensworth ER would occur as a result of project activities associated with either of these alternatives.

Project impacts of the Hanford West Bypass 2 alternatives would result in no effect under NEPA, and no impact under CEQA on Allensworth ER.

Habitat Conservation Plans

Neither of the Hanford West Bypass 2 alternatives nor the corresponding segment on the BNSF Alternative overlaps the plan area of the MBHCP (Appendix 3.7-B, Attachment 5). Therefore, no permanent direct or indirect impacts within the MBHCP plan area would occur as a result of the project impacts of either of these alternatives.

Project impacts of the Hanford West Bypass 2 alternatives would result in no effect under NEPA, and no impact under CEQA on habitat conservation plans.

Protected Trees

Impacts on protected trees in the Hanford West Bypass 2 alternatives would be the same as discussed for the Hanford West Bypass 1 alternatives. Trees that may be regulated under the Fresno County General Plan and/or the Kings County General Plan are present in both the Hanford West Bypass 2 Alternative, and the corresponding segment of the BNSF Alternative (Appendix 3.7-B, Attachment 6). Construction activities would both alter and remove some portion of these resources. Also, these impacts could occur as a result of both Hanford West Bypass 2 alternatives.
Project impacts on protected trees under the Hanford West Bypass 2 alternatives would result in an increase in the number of trees disturbed when compared to the corresponding segment on the BNSF Alternative.

Project impacts under the Hanford West Bypass 2 Modified Alternative would result in a negligible increase in the number of trees disturbed when compared to the Hanford West Bypass 2 Alternative.

Due to the number of protected trees that would be affected, the Hanford West Bypass 2 alternatives would result in relatively high-intensity loss of this resource. Therefore, the project impacts associated with the Hanford West Bypass 2 alternatives would result in an effect of substantial intensity under NEPA, and a significant impact under CEQA on protected trees.

Corcoran Elevated Alternative

Special-Status Plant Communities

Field surveys identified three special-status plant communities in the Corcoran Elevated Alternative: saltgrass flats, black willow thickets, and valley foothill riparian habitat located along the Tule River (Table 3.7-9; Appendix 3.7-B, Attachment 3). Additional unsurveyed habitats, including annual grasslands, could also support special-status plant communities. Permanent impacts would occur in identified special-status plant communities (i.e., valley foothill riparian) located in the footprint of the Corcoran Elevated Alternative. Permanent impacts would also occur in unsurveyed habitats that have the potential to support special-status plant communities. Impacts on special-status plant communities would occur as described above in the section on the direct and indirect impacts for habitats of concern. The Corcoran Elevated Alternative would result in slightly more permanent impacts on saltgrass flats and significantly more permanent impacts on unsurveyed habitats that could support special-status plant communities than the corresponding segment of the BNSF Alternative (Appendix 3.7-B, Attachment 3). The Corcoran Elevated Alternative would result in slightly less permanent impacts on black willow thicket and valley foothill riparian than the corresponding segment of the BNSF Alternative.

Impacts of the Corcoran Elevated Alternative would result in the loss of special-status plant communities. Therefore, the project impacts of the Corcoran Elevated Alternative would result in an effect of moderate intensity under NEPA and a significant impact under CEQA on special-status plant communities.

Jurisdictional Waters

Wetlands and other waters present in the Corcoran Elevated Alternative contain seasonal wetlands, vernal pools and swales, agricultural canals/ditches, lacustrine, and seasonal riverine (e.g., Cross Creek and Tule River) (Table 3.7-14; Table 3.7-15; Appendix 3.7-B, Attachments 4 and 5). Direct and indirect project impacts would occur under the Corcoran Elevated Alternative, resulting in the permanent disturbance of natural (e.g., vernal pools and swales and seasonal riverine) and man-made jurisdictional waters.

Both the Corcoran Elevated Alternative and the corresponding segment of the BNSF Alternative are located in an urban and rural setting, and are routed through Corcoran along SR 43 and the BNSF right-of-way. The majority of the jurisdictional waters in the footprints of the Corcoran Elevated Alternative and the corresponding segment of the BNSF Alternative are man-made and in poor ecological condition, with the exception of Cross Creek, which is in fair ecological condition, and Poso Creek and vernal pools and swales, which are in good ecological condition (Table 3.7-15). The Corcoran Elevated Alternative would have fewer permanent impacts on natural jurisdictional waters (including features in good or fair ecological condition) than the corresponding segment of the BNSF Alternative (Table 3.7-14; Appendix 3.7-B, Attachment 4).
Both the Corcoran Elevated Alternative and the corresponding segment of the BNSF Alternative would be constructed on an elevated structure above Cross Creek and the Tule River. Overall, the Corcoran Elevated Alternative’s indirect impacts, including indirect-bisected impacts on sensitive jurisdictional waters, resulting from both construction and project activities, are similar to those of the corresponding segment of the BNSF Alternative.

Impacts of the Corcoran Elevated Alternative on jurisdictional waters would result in relatively high-intensity loss of these resources due to the magnitude of the impact and the sensitivity of the features. Therefore, project-related impacts under the Corcoran Elevated Alternative would result in an effect of substantial intensity under NEPA and a significant impact under CEQA on jurisdictional waters.

Conservation Areas

Recovery Plans

The Corcoran Elevated Alternative overlaps an area covered by the *Recovery Plan for Upland Species of the San Joaquin Valley, California* (USFWS 1998). A portion of the Corcoran Elevated Alternative occurs in a satellite area identified in this recovery plan area (Appendix 3.7-B, Attachment 5). Construction of this alternative would result in permanent direct or indirect on the recovery plan area. The Corcoran Elevated Alternative and the corresponding segment in the BNSF Alternative both overlap the recovery plan area for the *Recovery Plan for Upland Species of the San Joaquin Valley, California* (USFWS 1998). Selection of the Corcoran Elevated Alternative would substantially decrease the amount of permanent disturbance to the recovery plan area compared with selection of the corresponding segment of the BNSF Alternative.

Due to the large area of impact, the Corcoran Elevated Alternative would result in relatively high-intensity loss to recovery plan areas. Therefore, the project impacts of the Corcoran Elevated Alternative would result in an effect of substantial intensity under NEPA and a significant impact under CEQA on recovery plans.

Allensworth Ecological Reserve

Neither the Corcoran Elevated Alternative nor the corresponding segment of the BNSF Alternative overlaps the Allensworth ER (Appendix 3.7-B, Attachment 5). Therefore, no permanent direct or indirect impacts on the Allensworth ER would occur as a result of project activities associated with either of these alternatives.

Project impacts of the Corcoran Elevated Alternative would result in no effect under NEPA, and no impact under CEQA on the Allensworth ER.

Habitat Conservation Plans

Neither the Corcoran Elevated Alternative nor the corresponding segment in the BNSF Alternative overlaps the plan area of the MBHCP (Appendix 3.7-B, Attachment 5). Therefore, no permanent direct or indirect impacts on this habitat conservation plan area would occur as a result of the project impacts of either of these alternatives.

Project impacts of the Corcoran Elevated Alternative would result in no effect under NEPA, and no impact under CEQA on habitat conservation plans.

Protected Trees

Trees that are regulated under the Kings County General Plan and/or the Corcoran City Code are present in the footprint of the Corcoran Elevated Alternative (Appendix 3.7-B, Attachment 6). Project impacts would both alter and remove some portion of these resources. Project impacts on protected trees under the Corcoran Elevated Alternative would result in a decrease in the number
of trees disturbed compared to the corresponding segment of the BNSF Alternative (Appendix 3.7-B, Attachment 6).

Due to the number of protected trees that would be affected, the Corcoran Elevated Alternative would result in an incremental change with little to no regional impact. Therefore, the project impacts associated with the Corcoran Elevated Alternative would result in an effect of moderate intensity under NEPA and a less than significant impact under CEQA on protected trees.

Corcoran Bypass Alternative

Special-Status Plant Communities

Field surveys identified three special-status plant communities in the Corcoran Bypass Alternative: saltgrass flats, black willow thickets, and valley foothill riparian habitat located along the Tule River (Table 3.7-9; Appendix 3.7-B, Attachment 3). Additional unsurveyed habitats that have the potential to support special-status plant communities, including annual grasslands, could also support special-status plant communities. However, both the project impacts and the natural lands are immediately adjacent to existing infrastructure (e.g., roads, canals, ditches). As such, the potential for special-status plant communities to occur is limited.

Permanent impacts would occur in identified special-status plant communities (i.e., valley foothill riparian) in the Corcoran Bypass Alternative. Permanent impacts would also occur in unsurveyed habitats that have the potential to support special-status plant communities. Impacts on special-status plant communities would occur as described above under the direct and indirect impacts for habitats of concern.

The Corcoran Bypass Alternative would result in similar permanent impacts on saltgrass flats, black willow thickets, and valley foothill riparian habitats and substantially more permanent impact on unsurveyed habitats that have the potential to support special-status plant communities than the corresponding segment of the BNSF Alternative (Appendix 3.7-B, Attachment 3).

Impacts of the Corcoran Bypass Alternative would result in a measurable adverse loss of special-status plant communities. Because the project period impacts are adjacent to existing developed lands, the potential for the special-status plant communities to occur is limited. Therefore, the project impacts of the Corcoran Bypass Alternative would result in an effect of moderate intensity under NEPA and a significant impact under CEQA on special-status plant communities.

Jurisdictional Waters

Wetlands and other waters present in the Corcoran Bypass Alternative include seasonal wetlands, vernal pools and swales, canals/ditches, lacustrine, and seasonal riverine (e.g., Cross Creek and the Tule River) (Table 3.7-14; Table 3.7-15; Appendix 3.7-B, Attachments 4 and 5). Direct and indirect impacts would occur due to construction of the Corcoran Bypass Alternative, resulting in the permanent disturbance of natural (e.g., seasonal wetlands, vernal pools and swales, and seasonal riverine) and man-made jurisdictional waters.

The Corcoran Bypass Alternative would be located in agricultural areas east of Corcoran, whereas the corresponding segment of the BNSF Alternative would be routed through Corcoran, along SR 43 and the BNSF right-of-way. The natural jurisdictional water features are in fair (Cross Creek) to good ecological condition (vernal pools and swales, seasonal wetlands, and Tule River), whereas the man-made features are generally in poor ecological condition (Table 3.7-15). The Corcoran Bypass Alternative would have slightly more permanent impacts on seasonal riverine features and man-made jurisdictional waters and fewer impacts on wetlands when compared
with the corresponding segment of the BNSF Alternative (Table 3.7-14; Appendix 3.7-B, Attachment 4).

Also, both the Corcoran Bypass Alternative and the corresponding BNSF Alternative segment would be constructed on an elevated structure above Cross Creek and the Tule River. Overall, indirect and indirect bisected impacts on sensitive jurisdictional waters associated with the Corcoran Bypass Alternative, as a result of both construction and project activities combined, are less than those associated with the corresponding segment of the BNSF Alternative.

Impacts of the Corcoran Bypass Alternative on jurisdictional waters would result in relatively high-intensity loss of these resources due to the magnitude of the impact and the sensitivity of vernal pools and swales and seasonal riverine features. Therefore, the project impacts under the Corcoran Bypass Alternative would result in an effect of substantial intensity under NEPA and a significant impact under CEQA.

Conservation Areas

Recovery Plans

The Corcoran Bypass Alternative overlaps the Recovery Plan for Upland Species of the San Joaquin Valley, California (USFWS 1998). A portion of the Corcoran Bypass Alternative occurs in a satellite area identified in this recovery plan area. Project activities on the Corcoran Bypass Alternative would result in permanent disturbance of this recovery plan area (Appendix 3.7-B, Attachment 5).

The Corcoran Bypass Alternative and the corresponding segment in the BNSF Alternative both overlap the recovery plan area for the Recovery Plan for Upland Species of the San Joaquin Valley, California (USFWS 1998). Selection of the Corcoran Bypass Alternative would greatly decrease the amount of permanent disturbance to the recovery plan area when compared with the corresponding BNSF Alternative segment (Appendix 3.7-B, Attachment 5).

Due to the large area of impact, the Corcoran Bypass Alternative would result in relatively high-intensity loss to recovery plan areas. Therefore, the project impacts of the Corcoran Bypass Alternative would result in an effect of substantial intensity under NEPA and a significant impact under CEQA on recovery plans.

Allensworth Ecological Reserve

Neither the Corcoran Bypass Alternative nor the corresponding segment of the BNSF Alternative overlaps the Allensworth ER (Appendix 3.7-B, Attachment 5). Therefore, no permanent direct or indirect project impacts on the Allensworth ER would occur as a result of project impacts associated with either of these alternatives.

Project impacts of the Corcoran Bypass Alternative would result in no effect under NEPA, and no impact under CEQA on the Allensworth ER.

Habitat Conservation Plans

Neither the Corcoran Bypass Alternative nor the corresponding segment of the BNSF Alternative overlaps the plan area of the MBHCP (Appendix 3.7-B, Attachment 5). Therefore, no permanent direct or indirect impacts on this habitat conservation plan area would occur as a result of project impacts of either of these alternatives.

Project impacts of the Corcoran Bypass Alternative would result in no effect under NEPA, and no impact under CEQA on habitat conservation plans.
Protected Trees

Trees that may be regulated under the Kings County General Plan and/or the Corcoran City Code are present in the Corcoran Bypass Alternative and in the corresponding segment of the BNSF alternatives. Direct and indirect project impacts would occur in association with the Corcoran Bypass Alternative, resulting in the disturbance of protected trees. Project impacts on protected trees under the Corcoran Bypass Alternative would result in a decrease of the number of unknown trees disturbed when compared to the corresponding segment in the BNSF Alternative (Appendix 3.7-B, Attachment 6).

Due to the number of protected trees that would be affected, the Corcoran Bypass Alternative would result in incremental change with little to no regional impact on this resource. Therefore, the project impacts associated with the Corcoran Bypass Alternative would result in an effect of moderate intensity under NEPA and a less than significant impact under CEQA on protected trees.

Allensworth Bypass Alternative

Special-Status Plant Communities

During the field surveys, five special-status plant communities were identified in the Allensworth Bypass Alternative: saltgrass flats, bush seepweed scrub, iodine bush scrub, black willow thickets, and valley foothill riparian (Table 3.7-9; Appendix 3.7-B, Attachment 3). Special-status plant communities could also be present in unsurveyed habitats that have the potential to support special-status plant communities (e.g., annual grasslands, riverine, and fragmented natural areas). Permanent impacts would occur in identified special-status plant communities (i.e., valley foothill riparian) in the Allensworth Bypass Alternative. Permanent impacts would also occur in unsurveyed habitats that have the potential to support special-status plant communities. Impacts on special-status plant communities would occur as described above under the direct and indirect impacts for habitats of concern.

The Allensworth Bypass Alternative would result in significantly fewer permanent impacts on bush seepweed scrub and unsurveyed habitats that have the potential to support special-status plant communities and slightly fewer permanent impacts on iodine bush scrub, alkali goldenbush scrub, Freemont cottonwood forest, red willow thickets, and valley foothill riparian than the corresponding segment of the BNSF Alternative (Appendix 3.7-B, Attachment 3, Table 3.7-9). The Allensworth Bypass Alternative would result in a greater number of permanent impacts on saltgrass flats and black willow thickets than the corresponding segment of the BNSF Alternative (Appendix 3.7-B, Attachment 3).

Due to the magnitude of the impact, the Allensworth Bypass Alternative would result in relatively high-intensity loss to special-status plant communities. Therefore, the project impacts of the Allensworth Bypass Alternative would result in an effect of substantial intensity under NEPA and a significant impact under CEQA on special-status plant communities because of the potential permanent direct and indirect impacts on these communities.

Jurisdictional Waters

Surveys for vernal pools were used to inform routing of the Allensworth Bypass to minimize impacts on wetlands and other waters (a reduction of more than 100 acres in the Wetland Study Area). Even after minimization of impacts, the Allensworth Bypass Alternative would permanently affect seasonal wetlands, vernal pools and swales, and seasonal riverine (e.g., Deer Creek, Poso Creek), and man-made features, including ditches, and lacustrine (e.g., Alpaugh Irrigation District pond) (Table 3.7-14; Table 3.7-15; Appendix 3.7-B, Attachments 4 and 5). Direct and indirect...
project impacts would occur in association with the Allensworth Bypass Alternative, resulting in the permanent disturbance of these jurisdictional waters.

The Allensworth Bypass Alternative travels primarily through agricultural lands, in contrast with the corresponding segment of the BNSF Alternative, which runs adjacent to significant undeveloped natural lands parallel to SR 43 and along the BNSF right-of-way. The majority of the wetland features (e.g., vernal pools and swales) as well as Deer Creek and Poso Creek are located in a highly fragmented landscape but are in relative fair to good ecological condition (Table 3.7-15). The remaining man-made features (e.g., ditches, lacustrine) are in relatively poor ecological condition. Selection of the Allensworth Bypass Alternative would greatly decrease the amount of permanent impacts on vernal pools and swales, seasonal wetlands, and other man-made jurisdictional waters compared with the corresponding segment of the BNSF Alternative (Table 3.7-14; Appendix 3.7-B, Attachment 4).

The Allensworth Bypass Alternative would bisect an existing lacustrine feature, resulting in an increased impact on this water storage feature compared to the corresponding segment of the BNSF Alternative. However, selection of the Allensworth Bypass Alternative would decrease the amount of indirect impacts on wetlands, including those that are sensitive to indirect-bisected impacts (e.g., vernal pool and swales) (Table 3.7-14; Appendix 3.7-B, Attachment 4). These indirect impacts would occur as a result of the combined construction and project activities.

Also, both the Allensworth Bypass and the corresponding segment of the BNSF Alternative would be constructed on an elevated structure above Deer Creek, and would be constructed at-grade and use a bridge to cross Poso Creek. If both the Allensworth Bypass and the Wasco Shafter Bypass are selected, the Poso Creek crossing would be constructed on an elevated structure.

Impacts of the Allensworth Bypass Alternative on jurisdictional waters would result in relatively high-intensity loss of these resources due to the magnitude of the impact and the sensitivity of features such as vernal pools and swales. Therefore, the project impacts of the Allensworth Bypass would result in an effect of substantial intensity under NEPA and a significant impact under CEQA on jurisdictional waters.

Conservation Areas

Recovery Plans
The Allensworth Bypass Alternative and the corresponding segment of the BNSF Alternative both overlap the recovery plan area for the Recovery Plan for Upland Species of the San Joaquin Valley, California (USFWS 1998). A portion of the Allensworth Bypass Alternative occurs in satellite and linkage areas identified in this recovery plan area (Appendix 3.7-B, Attachment 5). Selection of the Allensworth Bypass Alternative would greatly decrease the amount of permanent disturbance to the satellite area and greatly increase the amount of permanent disturbance to the linkage area identified in the recovery plan when compared with that of the corresponding BNSF Alternative segment (Appendix 3.7-B, Attachment 5).

Due to the large area of impact, the Allensworth Bypass Alternative would result in relatively high-intensity loss to recovery plan areas. Therefore, the project impacts of the Allensworth Bypass Alternative would result in an effect of substantial intensity under NEPA and a significant impact under CEQA on recovery plans.

Allensworth Ecological Reserve
The Allensworth Bypass Alternative does not overlap the Allensworth ER (Appendix 3.7-B, Attachment 5). This alternative is approximately 0.5 mile west of Allensworth ER. Therefore, no direct or indirect impacts on the Allensworth ER would occur as a result of project activities on this alternative.
In comparison with the corresponding segment in the BNSF Alternative, the Allensworth Bypass Alternative would have fewer permanent impacts on the Allensworth ER (Appendix 3.7-B, Attachment 5).

Project impacts of the Allensworth Bypass Alternative would result in no effect under NEPA, and no impact under CEQA on the Allensworth ER.

Habitat Conservation Plans

Neither the Allensworth Bypass Alternative nor the corresponding segment of the BNSF Alternative overlaps the plan area of the MBHCP (Appendix 3.7-B, Attachment 5). Therefore, no permanent direct or indirect impacts on this habitat conservation plan area would occur as a result of the project impacts of either of these alternatives.

Project impacts of the Allensworth Bypass Alternative would result in no effect under NEPA, and no impact under CEQA on habitat conservation plans.

Protected Trees

A few protected trees were mapped in the Allensworth Bypass Alternative and several unknown trees were mapped in the corresponding segment of the BNSF Alternative (Appendix 3.7-B, Attachment 6). Direct and indirect project impacts would occur in association with the Allensworth Bypass Alternative, resulting in the disturbance of protected trees. Project impacts on protected trees under the Allensworth Bypass Alternative would result in a negligible decrease in the number of trees disturbed when compared to the corresponding segment in the BNSF Alternative (Appendix 3.7-B, Attachment 6).

Due to the limited number of protected trees that would be affected, the Allensworth Bypass Alternative would result in only a slight change to existing biological conditions and little to no regional effects. Therefore, the project impacts under the Allensworth Bypass Alternative on protected trees would result in an effect of negligible intensity under NEPA, and a less than significant impact under CEQA.

Wasco-Shafter Bypass Alternative

Special-Status Plant Communities

There are no known occurrences of special-status plant communities within the Wasco-Shafter Bypass Alternative. Special-status plant communities could occur in unsurveyed habitats that have the potential to support special-status plant communities within the footprint of this alternative (Appendix 3.7-B, Attachment 3). However, these areas are small (<1 acre) and fragmented and are therefore unlikely to support special-status plant communities. Impacts on special-status plant communities would occur as described above under the direct and indirect impacts for habitats of concern.

Selection of the Wasco-Shafter Bypass Alternative would result in greater permanent impacts on unsurveyed habitats potentially suitable for special-status plant communities when compared with the corresponding BNSF Alternative segment (Appendix 3.7-B, Attachment 3).

Impacts of the Wasco-Shafter Bypass Alternative would result in the loss of unsurveyed habitats that have limited potential to support special-status plant communities. Therefore, the project impacts of the Wasco-Shafter Bypass Alternative would result in an effect of moderate intensity under NEPA and a significant impact under CEQA on special-status plant communities.
Jurisdictional Waters

Jurisdictional waters in the Wasco-Shafter Bypass Alternative include man-made structures (e.g., ditches and lacustrine) (Table 3.7-14; Table 3.7-15; Appendix 3.7-B, Attachments 4 and 5). No natural jurisdictional waters (e.g., seasonal wetlands, vernal pools and swales, and seasonal riverine) would be permanently affected by the use of this alternative. Direct and indirect impacts would occur during construction of the Wasco-Shafter Bypass Alternative, resulting in the permanent disturbance of man-made jurisdictional waters.

The Wasco-Shafter Bypass Alternative avoids urban centers and travels entirely through agricultural areas east of SR 43, whereas the corresponding BNSF Alternative segment travels through the urban centers of Wasco and Shafter along the existing, disturbed BNSF Railway right-of-way. Regardless of the alternative, the majority of the impacts would be on man-made features that provide limited ecological value (Table 3.7-15). When considering the magnitude of the impacts, the selection of the Wasco-Shafter Bypass Alternative would decrease the amount of permanent direct and indirect impacts on wetlands and other waters when compared with the corresponding segment of the BNSF Alternative (Table 3.7-14; Appendix 3.7-B, Attachment 4). These differences would be negligible, considering the man-made nature of the majority of these resources.

Impacts of the Wasco-Shafter Bypass Alternative would result in the loss of jurisdictional waters, although no natural jurisdictional waters would be affected. Therefore, the project impacts of the Wasco-Shafter Bypass Alternative would result in an effect of moderate intensity under NEPA, and a significant impact under CEQA on jurisdictional waters.

Conservation Areas

Recovery Plans

The Wasco-Shafter Bypass Alternative overlaps the Recovery Plan for Upland Species of the San Joaquin Valley, California (USFWS 1998). A portion of the Wasco-Shafter Bypass Alternative occurs in a linkage area identified in this recovery plan. Project activities on the Wasco-Shafter Bypass Alternative would result in permanent disturbance of this recovery plan area (Appendix 3.7-B, Attachment 5).

The Wasco-Shafter Bypass Alternative and the corresponding BNSF Alternative segment both occur within the recovery plan area for the Recovery Plan for Upland Species of the San Joaquin Valley, California (USFWS 1998). However, the Wasco-Shafter Bypass Alternative results in a larger permanent disturbance within the linkage recovery plan area when compared with the corresponding BNSF Alternative segment (Appendix 3.7-B, Attachment 5).

Due to the large area of impact, the Wasco-Shafter Bypass Alternative would result in relatively high-intensity loss to recovery plan areas. Therefore, the project impacts of the Wasco-Shafter Bypass Alternative would result in an effect of substantial intensity under NEPA and a significant impact under CEQA on recovery plans.

Allensworth Ecological Reserve

Neither the Wasco-Shafter Bypass Alternative nor its corresponding segment in the BNSF Alternative overlaps the Allensworth ER (Appendix 3.7-B, Attachment 5). Therefore, no permanent direct or indirect impacts on the Allensworth ER would occur as a result of project and operation of either of these alternatives.

Project impacts of the Wasco-Shafter Bypass Alternative would result in no effect under NEPA, and no impact under CEQA on the Allensworth ER.
Habitat Conservation Plans.
Both the Wasco-Shafter Bypass Alternative and the corresponding segment of the BNSF Alternative overlap the MBHCP area. Construction of either alternative would result in permanent impacts within the habitat conservation plan area (Appendix 3.7-B, Attachment 5).

Project impacts of the Wasco-Shafter Bypass Alternative and the corresponding segment of the BNSF Alternative do not conflict with the provisions of the MBHCP because proposed mitigation ratios are similar to the “adequate mitigation” ratios presented in the plan. Also, the Wasco-Shafter Bypass Alternative and the corresponding segment of the BNSF Alternative do not overlap with the conceptual focus areas identified as potential preserve areas. Therefore, the project impacts of the Wasco-Shafter Bypass Alternative would result in no effect under NEPA, and no impact under CEQA on habitat conservation plans.

Protected Trees

Trees that may be regulated are present in the Wasco-Shafter Bypass Alternative and in the corresponding segment of the BNSF Alternative. The majority of the trees present in both areas are unidentified; however, a few native oak species could be present. Direct and indirect project impacts would occur with selection of the Wasco-Shafter Bypass Alternative, and would result in the disturbance of protected trees.

Project impacts on protected trees under the Wasco-Shafter Bypass Alternative would result in a significant increase in the number of trees disturbed compared to the construction of the corresponding segment of the BNSF Alternative (Appendix 3.7-B, Attachment 6).

Due to the number of protected trees that would be affected, the Wasco-Shafter Bypass Alternative would result in relatively high-intensity loss of this resource. Therefore, the project impacts of the Wasco-Shafter Bypass Alternative would result in an effect of substantial intensity on protected trees under NEPA and a significant impact under CEQA.

Bakersfield South Alternative

Special-Status Plant Communities

During the field surveys, black willow thickets and valley foothill riparian habitat were identified along the Kern River of the Bakersfield South Alternative (Table 3.7-9; Appendix 3.7-B, Attachment 3). Also, unsurveyed habitats including fragmented habitats within urban areas, riparian forest, alkali desert scrub, and annual grasslands, have low potential to support special-status plant communities. However, the Bakersfield South Alternative is in an urban setting, and the remaining suitable habitat areas are small and fragmented; therefore, special-status plant communities are not expected to be present (except where identified along the Kern River). Permanent impacts would occur in the identified special-status plant communities (e.g., valley foothill riparian) in the Bakersfield South Alternative. Permanent impacts would also occur in unsurveyed habitats that have the potential to support special-status plant communities. Impacts on special-status plant communities would occur as described above under the direct and indirect impacts for habitats of concern.

Selection of the Bakersfield South Alternative would cause slightly more permanent impacts on valley foothill riparian and on unsurveyed habitats that have the potential to support special-status plant communities than would the corresponding segment of the BNSF Alternative (Appendix 3.7-B, Attachment 3). The Bakersfield South Alternative would cause fewer impacts on black willow thickets. Riparian habitat along the Kern River Corridor receives additional protection under Chapter 19.73 of the Kern County ordinances.
Because impacts on black willow thickets and valley foothill riparian habitat are small (less than 1 acre), other special-status plant communities have limited potential to occur in areas where surveys were not conducted, and unsurveyed potential habitat is limited and has been previously disturbed, degraded, or otherwise fragmented, the Bakersfield South Alternative would result in only a slight change from existing biological conditions, with few if any regional effects. Impacts of the Bakersfield South Alternative would result in the incremental loss of special-status plant communities. Therefore, the project impacts of the Bakersfield South Alternative would result in an effect of moderate intensity under NEPA and a less than significant impact under CEQA on special-status plant communities.

Jurisdictional Waters

Wetlands and other waters in the Bakersfield South Alternative include seasonal riverine (e.g., Kern River) and the associated riparian buffer (as described above under special-status plant communities) as well as canals/ditches, and lacustrine features. Direct and indirect impacts would occur during construction of the Bakersfield South Alternative, resulting in the permanent disturbance of man-made features, including canals/ditches, and lacustrine features. Direct and indirect impacts on seasonal riverine features (e.g., Kern River) and a small seasonal wetland would occur during the project-related activities (Table 3.7-14; Table 3.7-15; Appendix 3.7-B, Attachments 4 and 5).

Both the Bakersfield South Alternative and the corresponding BNSF Alternative segment would be located in areas of urban Bakersfield that contain similar man-made and natural wetlands and natural waters. The majority of the jurisdictional waters in the Bakersfield South Alternative and corresponding BNSF Alternative segment are man-made and in poor ecological condition, with the exception of the Kern River and the seasonal wetlands, which are in fair to good ecological condition (Table 3.7-15).

In some instances, because the alternatives are located close together, nearly identical impacts on the jurisdictional waters are anticipated. When compared with the corresponding segment of the BNSF Alternative, the Bakersfield South Alternative would marginally increase the amount of permanent impacts on jurisdictional waters (Table 3.7-14; Appendix 3.7-B, Attachment 4). When indirect impacts are compared, selection of the Bakersfield South Alternative would decrease the amount of indirect impacts on jurisdictional waters. These indirect impacts would occur as a result of both construction and project activities on the Bakersfield South Alternative. Both the Bakersfield South Alternative and the corresponding segment of the BNSF Alternative would be constructed on an elevated structure over the Kern River.

Impacts of the Bakersfield South Alternative on jurisdictional waters would result in relatively high-intensity loss of these resources due to the magnitude of the impact. Therefore, the project impacts of the Bakersfield South Alternative would result in an effect of substantial intensity under NEPA and a significant impact under CEQA on jurisdictional waters.

Conservation Areas

Recovery Plans

The Bakersfield South Alternative overlaps the Recovery Plan for Upland Species of the San Joaquin Valley, California (USFWS 1998). A portion of the Bakersfield South Alternative occurs in a satellite area identified in this recovery plan. Project impacts associated with the Bakersfield South Alternative would result in permanent disturbance of this recovery plan area (Appendix 3.7-B, Attachment 5).

Both the Bakersfield South Alternative and the corresponding BNSF Alternative segment occur within the recovery plan area identified in the Recovery Plan for Upland Species of the San
Joaquin Valley, California (USFWS 1998). Selection of the Bakersfield South Alternative would greatly decrease the amount of permanent disturbance to this recovery plan area when compared with the corresponding BNSF Alternative segment (Appendix 3.7-B, Attachment 5).

Due to the large area of impact, the Bakersfield South Alternative would result in relatively high-intensity loss to recovery plan areas. Therefore, the project impacts of the Bakersfield South Alternative would result in an effect of substantial intensity under NEPA and a significant impact under CEQA on recovery plans.

Allensworth Ecological Reserve

Neither the Bakersfield South Alternative nor its corresponding segment in the BNSF Alternative overlaps the Allensworth ER (Appendix 3.7-B, Attachment 5). Therefore, no permanent direct or indirect impacts on the Allensworth ER would occur as a result of project impacts associated with either of these alternatives.

Project impacts of the Bakersfield South Alternative would result in no effect under NEPA, and no impact under CEQA on the Allensworth ER.

Habitat Conservation Plans

The Bakersfield South Alternative overlaps the MBHCP. Project activities associated with the Bakersfield South Alternative would result in permanent disturbance within the plan area of the MBHCP (Appendix 3.7-B, Attachment 5).

Both the Bakersfield South Alternative and the corresponding segment of the BNSF Alternative occur within the plan area for the MBHCP. Neither alternative conflicts with the provisions of the MBHCP because proposed mitigation ratios are similar to the “adequate mitigation” ratios presented in the plan. Also, the Bakersfield South Alternative and the corresponding BNSF Alternative do not overlap with the conceptual focus areas identified as potential preserve areas. Therefore, the project impacts of the Bakersfield South Alternative would result in no effect under NEPA, and no impact under CEQA on habitat conservation plans.

Protected Trees

Trees that may be regulated under the Kern River Plan Element and/or the City of Bakersfield Municipal Code are present in the Bakersfield South Alternative and in the corresponding segment of the BNSF Alternative (Appendix 3.7-B, Attachment 6). Direct and indirect impacts would occur during project activities of the Bakersfield South Alternative, resulting in the permanent loss of protected trees.

Project impacts on protected trees under the Bakersfield South Alternative would result in an increase in the number of trees disturbed when compared to the construction of the corresponding segment in the BNSF Alternative (Appendix 3.7-B, Attachment 6).

Due to the number of protected trees that would be affected, the Bakersfield South Alternative would result in relatively high-intensity loss of this resource. Therefore, the project impacts of the Bakersfield South Alternative would result in an effect of substantial intensity under NEPA and a significant impact under CEQA on protected trees.

Bakersfield Hybrid Alternative

Special-Status Plant Communities

During the field surveys, black willow thickets and valley foothill riparian habitat were identified along the Kern River of the Bakersfield Hybrid Alternative (Table 3.7-9; Appendix 3.7-B, Attachment 3). Also, unsurveyed habitats including fragmented habitats within urban areas,
riparian forest, alkali desert scrub, and annual grasslands, have low potential to support special-status plant communities. However, the Bakersfield Hybrid Alternative is in an urban setting, and the remaining suitable habitat areas are small and fragmented; therefore, special-status plant communities are not expected to be present (except where identified along the Kern River). Permanent impacts would occur in the identified special-status plant communities (e.g., valley foothill riparian) in the Bakersfield Hybrid Alternative. Permanent impacts would also occur in unsurveyed habitats that have the potential to support special-status plant communities. Impacts on special-status plant communities would occur as described above under the direct and indirect impacts for habitats of concern.

Selection of the Bakersfield Hybrid Alternative would cause slightly more permanent impacts on valley foothill riparian and unsurveyed habitats that have the potential to support special-status plant communities than would the corresponding BNSF Alternative segment (Appendix 3.7-B, Attachment 3). The Bakersfield Hybrid Alternative would cause fewer impacts on black willow thickets than the corresponding segment of the BNSF Alternative. Riparian habitat along the Kern River Corridor receives additional protection under Chapter 19.73 of the Kern County ordinances. Because impacts on black willow thickets and valley foothill riparian habitat are small (less than 1 acre), other special-status plant communities have limited potential to occur in areas where surveys were not conducted, and unsurveyed potential habitat is limited and has been previously disturbed, degraded, or otherwise fragmented, the Bakersfield Hybrid Alternative would result in only a slight change from existing biological conditions, with few if any regional effects. Therefore, the project impacts of the Bakersfield Hybrid Alternative would result in an effect of moderate intensity under NEPA and a less than significant impact under CEQA on special-status plant communities.

Jurisdictional Waters

Wetlands and other waters in the Bakersfield Hybrid Alternative include seasonal riverine (e.g., Kern River) and the associated riparian buffer (as described above under special-status plant communities) as well as canals/ditches, and lacustrine. Direct and indirect impacts would occur during construction of the Bakersfield Hybrid Alternative, resulting in the permanent disturbance of man-made features, including canals/ditches, and lacustrine. Direct and indirect impacts on seasonal riverine features (e.g., Kern River) and a small seasonal wetland would occur during the project activities (Table 3.7-14; Table 3.7-15; Appendix 3.7-B, Attachments 4 and 5).

Both the Bakersfield Hybrid Alternative and the corresponding BNSF Alternative segment would be located in areas of urban Bakersfield that contain similar man-made and natural wetlands and natural waters. The majority of the jurisdictional waters in the Bakersfield Hybrid Alternative and corresponding BNSF Alternative segment are man-made and in poor ecological condition, with the exception of the Kern River and the seasonal wetlands, which are in fair to good ecological condition (Table 3.7-15).

In some instances, because the alternatives are located close together, nearly identical impacts on the jurisdictional waters are anticipated. When compared with the corresponding segment of the BNSF Alternative, the Bakersfield Hybrid Alternative would marginally increase the amount of permanent impacts on jurisdictional waters (Table 3.7-14; Appendix 3.7-B, Attachment 4). When indirect impacts are compared, selection of the Bakersfield Hybrid Alternative would decrease the amount of indirect impacts on jurisdictional waters. These indirect impacts would occur as a result of both construction and project activities on the Bakersfield Hybrid Alternative. Both the Bakersfield Hybrid Alternative and the corresponding segment of the BNSF Alternative would be constructed on an elevated structure over the Kern River.
Impacts of the Bakersfield Hybrid Alternative on jurisdictional waters would result in relatively high-intensity loss of these resources due to the magnitude of the impact. Therefore, the project impacts of the Bakersfield Hybrid Alternative would result in an effect of substantial intensity under NEPA and a significant impact under CEQA on jurisdictional waters.

Conservation Areas

Recovery Plans

The Bakersfield Hybrid Alternative overlaps the *Recovery Plan for Upland Species of the San Joaquin Valley, California* (USFWS 1998). A portion of the Bakersfield Hybrid Alternative occurs in a satellite area identified in this recovery plan. Project impacts associated with the Bakersfield Hybrid Alternative would result in permanent disturbance of this recovery plan area (Appendix 3.7-B, Attachment 5).

Both the Bakersfield Hybrid Alternative and the corresponding BNSF Alternative segment occur within the recovery plan area identified in the *Recovery Plan for Upland Species of the San Joaquin Valley, California* (USFWS 1998). Selection of the Bakersfield Hybrid Alternative would greatly decrease the amount of permanent disturbance to this recovery plan area when compared with the corresponding BNSF Alternative segment (Appendix 3.7-B, Attachment 5).

Due to the large area of impact, the Bakersfield South Alternative would result in relatively high-intensity loss to recovery plan areas. Therefore, the project impacts of the Bakersfield Hybrid Alternative would result in an effect of substantial intensity under NEPA and a significant impact under CEQA on recovery plans.

Allensworth Ecological Reserve

Neither the Bakersfield Hybrid Alternative nor its corresponding segment in the BNSF Alternative overlaps the Allensworth ER (Appendix 3.7-B, Attachment 5). Therefore, no permanent direct or indirect impacts on the Allensworth ER would occur as a result of project impacts associated with either of these alternatives.

Project impacts of the Bakersfield Hybrid Alternative would result in no effect under NEPA, and no impact under CEQA on the Allensworth ER.

Habitat Conservation Plans

The Bakersfield Hybrid Alternative overlaps the MBHCP. Project activities associated with the Bakersfield Hybrid Alternative would result in permanent disturbance within the plan area of the MBHCP (Appendix 3.7-B, Attachment 5).

Both the Bakersfield Hybrid Alternative and the corresponding segment of the BNSF Alternative occur within the plan area for the MBHCP. Neither alternative conflicts with the provisions of the MBHCP because proposed mitigation ratios are similar to the “adequate mitigation” ratios presented in the plan. Also, the Bakersfield Hybrid Alternative and the corresponding BNSF Alternative do not overlap with the conceptual focus areas identified as potential preserve areas. Therefore, the project impacts of the Bakersfield Hybrid Alternative would result in no effect under NEPA, and no impact under CEQA on habitat conservation plans.

Protected Trees

Trees that may be regulated under the Kern River Plan Element and/or the City of Bakersfield Municipal Code are present in the Bakersfield Hybrid Alternative and in the corresponding segment of the BNSF Alternative (Appendix 3.7-B, Attachment 6). Direct and indirect impacts would occur during project activities of the Bakersfield Hybrid Alternative, resulting in the permanent loss of protected trees.
Project impacts on protected trees under the Bakersfield Hybrid Alternative would result in an increase in the number of trees disturbed when compared to the construction of the corresponding segment in the BNSF Alternative (Appendix 3.7-B, Attachment 6).

Due to the number of protected trees that would be affected, the Bakersfield Hybrid Alternative would result in relatively high-intensity loss of this resource. Therefore, the project impacts of the Bakersfield Hybrid Alternative would result in an effect of substantial intensity under NEPA and a significant impact under CEQA on protected trees.

Heavy Maintenance Facility Alternatives

Table 3.7-16 lists habitats of concern potentially affected by the HMF alternatives. The conclusions presented in Table 3.7-16 are based on the presence or absence of habitats of concern within the footprint of each HMF and the potential for permanent project impacts to occur.

Table 3.7-16
Habitats of Concern Potentially Affected by the HMF Alternatives during Project Operation

<table>
<thead>
<tr>
<th>HMF Alternatives</th>
<th>Special-Status Plant Communities (\text{a}) (acres)</th>
<th>Jurisdictional Waters (acres)</th>
<th>Conservation Areas</th>
<th>Total Impact Acreage and NEPA/CEQA Determinations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresno Works-Fresno</td>
<td>9.06 Negligible effect/Less than significant impact</td>
<td>6.63 Moderate effect/Significant impact</td>
<td>— No effect/No impact</td>
<td>— No effect/No impact</td>
</tr>
<tr>
<td>Kings County – Hanford</td>
<td>39.02 Negligible effect/Less than significant impact</td>
<td>1.89 Moderate effect/Significant impact</td>
<td>— No effect/No impact</td>
<td>— No effect/No impact</td>
</tr>
<tr>
<td>KCOG – Wasco</td>
<td>— No effect/No impact</td>
<td>1.27 Moderate effect/Significant impact</td>
<td>74.74 Substantial effect/Significant impact</td>
<td>— No effect/No impact</td>
</tr>
<tr>
<td>KCOG – Shafter East</td>
<td>0.10 Negligible effect/Less than significant impact</td>
<td>1.14 Moderate effect/Significant impact</td>
<td>— No effect/No impact</td>
<td>— No effect/No impact</td>
</tr>
<tr>
<td>KCOG – Shafter West</td>
<td>— No effect/No impact</td>
<td>— No effect/No impact</td>
<td>— No effect/No impact</td>
<td>— No effect/No impact</td>
</tr>
</tbody>
</table>

Notes:
— = No impact or not applicable
All impacts were calculated based on 15% engineering design construction footprint.
\(\text{a}\) Includes acreage of impacts on potentially suitable habitat that could support special-status plant communities.
Special-Status Plant Communities

The Fresno Works--Fresno, Kings County--Hanford, and Kern Council of Governments--Shafter East HMFs would result in permanent impacts on unsurveyed habitats that have the potential to support special-status plant communities. Due to the limited nature of these impacts, these HMF sites would result in only a slight change to existing biological conditions and little to no regional effects. Therefore, the project impacts of these HMF sites would result in an effect of negligible intensity on special-status plant communities under NEPA, and a less than significant impact under CEQA. The remaining HMF would have no effect under NEPA, and no impact under CEQA on special-status plant communities.

Jurisdictional Waters

The Fresno Works–Fresno, Kings County–Hanford, Kern Council of Governments–Wasco, and Kern Council of Governments–Shafter East HMFs would result in permanent impacts on jurisdictional waters, including mostly man-made features (i.e. canal/ditch, retention/detention basin). Impacts of these HMF sites would result in the loss of jurisdictional waters on a regional scale. Therefore, the project impacts of these HMF sites would result in an effect of moderate intensity on jurisdictional waters under NEPA, and a significant impact under CEQA. The remaining HMF would have no effect under NEPA, and no impact under CEQA on jurisdictional waters.

Conservation Areas

In general, project impacts of the HMFs would result in no effect under NEPA, when considering both context and intensity, and no impact under CEQA because the sites either do not overlap with the plan or reserve area, or would not conflict with the provisions of the HCP. However, the Kern Council of Governments–Wasco HMF would permanently impact a linkage area identified in the Recovery Plan for Upland Species of the San Joaquin Valley, California (USFWS 1998). Due to the large area of impact, the Kern Council of Governments–Wasco HMF would result in relatively high-intensity loss to recovery plan areas. Therefore, the project impacts of the Kern Council of Governments–Wasco HMF would result in an effect of substantial intensity under NEPA, and a significant impact under CEQA.

Protected Trees

The Kings County–Hanford, Kern Council of Governments–Wasco, Kern Council of Governments–Shafter East, and Kern Council of Governments–Shafter West HMFs would have no permanent impacts on protected trees. Therefore, the project impacts of these HMFs would result in no effect under NEPA, when considering both context and intensity and no impact under CEQA on protected trees. The Fresno Works–Fresno HMF would result in permanent impacts on protected trees, resulting in relatively high-intensity loss to this resource. Therefore, the Fresno Works–Fresno HMF would result in an effect of substantial intensity under NEPA, and a significant impact under CEQA on protected trees.

Station Alternatives

Table 3.7-17 lists habitats of concern potentially affected by the station alternatives. The conclusions presented in Table 3.7-17 are based the presence or absence of habitats of concern within each station footprint and the potential for permanent project impacts on occur.
Table 3.7-17
Habitats of Concern Potentially Affected by the Station Alternatives during Project Operation

<table>
<thead>
<tr>
<th>Station Alternatives</th>
<th>Special-Status Plant Communities</th>
<th>Jurisdictional Waters</th>
<th>Conservation Areas</th>
<th>Protected Trees</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Recovery Plans</td>
<td>Allenworth ER</td>
</tr>
<tr>
<td>Fresno Station–Mariposa</td>
<td>No effect/ No impact</td>
<td>No effect/ No impact</td>
<td>No effect/ No impact</td>
<td>No effect/ No impact</td>
</tr>
<tr>
<td>Kings/Tulare Regional Station–West</td>
<td>18.59 Negligible effect/Less than significant impact</td>
<td>No effect/ No impact</td>
<td>— No effect/ No impact</td>
<td>— No effect/ No impact</td>
</tr>
<tr>
<td>Kings/Tulare Regional Station–East</td>
<td>No effect/ No impact</td>
<td>No effect/ No impact</td>
<td>— No effect/ No impact</td>
<td>— No effect/ No impact</td>
</tr>
<tr>
<td>Bakersfield Station–North</td>
<td>No effect/ No impact</td>
<td>No effect/ No impact</td>
<td>— 21.14 Moderate effect/ Significant impact</td>
<td>— 21.14 No effect/ No impact</td>
</tr>
<tr>
<td>Bakersfield Station–South</td>
<td>No effect/ No impact</td>
<td>No effect/ No impact</td>
<td>— 23.86 Moderate effect/ Significant impact</td>
<td>— 23.86 No effect/ No impact</td>
</tr>
<tr>
<td>Bakersfield Station–Hybrid</td>
<td>No effect/ No impact</td>
<td>No effect/ No impact</td>
<td>— 29.96 Moderate effect/ Significant impact</td>
<td>— 29.96 No effect/ No impact</td>
</tr>
</tbody>
</table>

Notes:
— = No impact or not applicable
All impacts were calculated based on 15% engineering design construction footprint.

Special-Status Plant Communities

The Kings/Tulare Regional Station–West Alternative would result in permanent impacts on unsurveyed habitats that have the potential to support special-status plant communities. Due to the limited nature of these impacts, the Kings/Tulare Regional Station–West Alternative would
result in only a slight change to existing biological conditions and little to no regional effects. Therefore, the project impacts of the Kings/Tulare Regional Station–West Alternative would result in an effect of negligible intensity on special-status plant communities under NEPA, and a less than significant impact under CEQA. The remaining station alternatives would have no effect under NEPA, and no impact under CEQA on special-status plant communities.

Jurisdictional Waters

No station alternative would result in permanent impacts on jurisdictional waters. Therefore, the station alternatives would result in no effect under NEPA, and no impact under CEQA on jurisdictional waters.

Conservation Areas

In general, project impacts of the station alternatives would result in no effect under NEPA when considering both context and intensity, and no impact under CEQA because the stations either do not overlap with a plan or reserve area, or would not conflict with the provisions of a HCP. However, the Bakersfield Station alternative would permanently impact a satellite area identified in the Recovery Plan for Upland Species of the San Joaquin Valley, California (USFWS 1998). The impact of the Bakersfield Station alternatives would result in the loss of the recovery plan area. Therefore, the project impacts of the Bakersfield Station alternatives would result in an effect of moderate intensity under NEPA, and a significant impact under CEQA on recovery plans.

Protected Trees

The Bakersfield Station—Hybrid Kings/Tulare Regional Station – East, and Kings/Tulare Regional Station – West alternatives would have no permanent impacts on protected trees. Therefore, the project impacts from these station alternatives would result in no effect under NEPA when, and no impact under CEQA on protected trees. The remaining station alternatives would result in permanent impacts on protected trees, and would therefore result in effects ranging from negligible to substantial intensity under NEPA, and either a less than significant or significant impact under CEQA on protected trees, depending on the number of trees impacted.

Impact BIO#8 – Project Effects on Wildlife Movement Corridors

The project incorporates a number of engineering designs that would facilitate wildlife movement. At select locations, specific wildlife movement structures would be installed (as described in Chapter 2, Alternatives). However, implementation, including design and locations of these structures, vary across the HST alternatives due to existing adjacent infrastructure. For a more detailed discussion of potential impacts on wildlife movement corridors refer to Section 5.6 of the Fresno to Bakersfield Section: Biological Resources and Wetlands Technical Report (Authority and FRA 2012a).

Direct BIO#8 Project Impacts

Design elements of the HST alternatives would facilitate wildlife movement, including elevated tracks, road overcrossings and undercrossings, and specific structures designed for wildlife crossings, which could allow for unimpeded wildlife movement (as described in Chapter 2, Alternatives); however, sections of the HST alternatives would result in direct impacts on wildlife movement, which could ultimately preclude the use of that corridor by wildlife. Direct impacts include the placement of temporary and permanent linear barriers to wildlife movement with restricted crossing opportunities. This may cause habitat shifts (toward nonnative and/or disturbed type communities) over time (through direct effects), because it could substantially degrade linkages, which may no longer provide food, cover, or ease of travel for many species.
These shifts in habitat use can result in increased competition for resources, as well as the potential for genetic isolation of populations.

The severity of this impact to wildlife movement for each HST alternative is dependent on the permeability of the alternative (i.e., the presence of elevated structures, road crossings, or wildlife crossings), the amount of natural land within and adjacent to the alternative, and the presence of identified linkages. HST alternatives on an elevated or viaduct structure are located over a number of riparian and wildlife movement corridor (linkages) areas. These structures would facilitate wildlife movement, but would incrementally affect movement patterns and linkage connectivity in the region. Noise barriers installed for noise mitigation are not expected to affect wildlife movement because they will be located outside of known linkages, will be grade separated, or will be adjacent to urban areas which are existing barriers to wildlife movement (see Figures 3.4-15 through 3.4-19 in Section 3.4, Noise and Vibration, for noise barrier locations).

In urban Bakersfield, where the track is predominantly elevated, noise barriers will also be elevated alongside the track and will not impede wildlife movement. In at-grade sections, security fencing will be installed for safety and security purposes. In these sections, wildlife movement will be facilitated through dedicated wildlife movement structures, bridges, road overcrossings and undercrossings, culverts, and other drainage facilities.

Outside of riparian corridors and known linkages, much of the project footprint has been converted to agricultural or developed urban areas. Much of this area is disturbed on a daily-to-seasonal basis. These areas provide marginal habitat for wildlife at best. On a metapopulation level, developed areas act as barriers to natural wildlife movement and provide little-to-no natural habitat value to most plant and wildlife species. Select species, however, have adapted and acclimated to developed habitats. For example, urban wildlife still persists within the city limits of Bakersfield in vacant lots and open areas, in otherwise marginal habitat. Therefore, although wildlife species that have adapted to urban and agricultural environments may be affected by the placement of barriers in these areas, this impact would be less severe than impacts on species using natural areas.

Indirect BIO#8 Project Impacts

In addition to HSTs passing over tracks through wildlife movement corridors, implementation of the project would require ongoing operation and maintenance activities (e.g., routine inspection and maintenance of the HST right-of-way). These operational activities occurring at or in the vicinity of wildlife movement corridors or natural lands may result in indirect disruption of wildlife movement through lighting, noise, motion, and startle effects.

Some indirect disturbance, such as noise, of the habitats associated with a wildlife corridor may cause wildlife to avoid use of a linkage. As discussed in Section 3.4, Noise and Vibration, the FRA has established noise exposure limits for wildlife (mammals and birds). Noise exposure limits for each are a sound exposure level (SEL) (i.e., noise exposure from an individual train passage) of 100 dBA from passing trains. It is assumed that noise exposure that exceeds the 100-dBA SEL threshold could elicit a negative response, such as avoidance of a linkage.

In at-grade crossings the screening distance (i.e., distance from the trackway centerline within which an impact could result) for a single-train pass-by SEL of 100 dBA would be approximately 100 feet from the track centerline (for a total width of 200 feet). In all areas that are at-grade where the right-of-way is less than a width of 200 feet and that are adjacent to substantive wildlife habitat (e.g., identified habitat linkages), the HST could expose wildlife to noise levels that exceed the 100-dBA SEL threshold, and which may elicit a startle, avoidance, or negative behavior by these wildlife species. This may cause habitat shifts (toward nonnative and/or
disturbed type communities) over time (through indirect effects), because wildlife are no longer able to move freely between areas of natural habitat.

BNSF Alternative

The BNSF Alternative passes through all of the identified linkages discussed above; thus this alternative would directly and indirectly impact regional wildlife movement. In portions of the urban areas of Fresno, Wasco, Shafter, and Bakersfield, and in the vicinity of riparian corridors along portions of the Kings River, St. John’s River–Cross Creek, SR 43/SR 155, Tule River, Deer Creek–Sand Ridge, and Kern River linkages, the BNSF Alternative would be constructed on a bridge or elevated structure (Figure 3.7-4), resulting in open areas at ground level for local urban wildlife movement. Although portions of the BNSF Alternative would be elevated, large sections would be at-grade, which would adversely affect local and regional wildlife movement, particularly movement along riparian corridors. The at-grade sections would particularly affect portions of movement corridors within the Kings River, St. John’s River–Cross Creek, SR 43/SR 155, Tule River, Deer Creek–Sand Ridge, and Poso Creek linkages. However, project design features are incorporated to minimize disturbance to the linkage and to allow for wildlife movement in these areas. Impacts of the BNSF Alternative on wildlife movement corridors would have influential regional effects. Therefore, project period impacts under the BNSF Alternative would result in an effect of substantial intensity under NEPA, on wildlife movement corridors during project activities. The impact would be significant under CEQA.

Hanford West Bypass 1 and Hanford West Bypass 1 Modified Alternatives

The Hanford West Bypass 1 alternatives pass through the Kings River, SR 43/SR 155, and St. John’s River–Cross Creek linkages; thus this alternative would directly and indirectly affect wildlife movement corridors. The Hanford West Bypass 1 alternatives would result in impacts on wildlife movement corridors that would be similar to those of the corresponding segment of the BNSF Alternative. In general, the impacts associated with project-period activities of either of the Hanford West Bypass 1 alternatives would be similar to the impacts associated with the corresponding segment of the BNSF Alternative.

Impacts of the Hanford West Bypass 1 alternatives on wildlife movement corridors would have incremental regional effects. Therefore, the project impacts of the Hanford West Bypass 1 alternatives would result in an effect of moderate intensity under NEPA, and a significant impact under CEQA on wildlife movement corridors.

Hanford West Bypass 2 and Hanford West Bypass 2 Modified Alternatives

The Hanford West Bypass 2 alternatives pass through the Kings River, SR 43/SR 155, and St. John’s River–Cross Creek linkages; thus, this alternative would directly and indirectly affect wildlife movement corridors. The Hanford West Bypass 2 alternatives would result in impacts on wildlife movement corridors that are similar to those of the corresponding segment of the BNSF Alternative. In general, the impacts of the operational activity of the Hanford West Bypass 2 alternatives would be similar to those of the corresponding segment of the BNSF Alternative segment.

Impacts of the Hanford West Bypass 2 alternatives on wildlife movement corridors would have incremental regional effects. Therefore, the project impacts of the Hanford West Bypass 2 alternatives would result in an effect of moderate intensity under NEPA, and a significant impact under CEQA on wildlife movement corridors.
Corcoran Elevated Alternative

The Corcoran Elevated Alternative passes through the SR 43/SR 155 and Tule River linkages; thus, this alternative would directly and indirectly affect wildlife movement corridors. The Corcoran Elevated Alternative would result in fewer impacts on wildlife movement corridors than the corresponding segment of the BNSF Alternative, because it would be on an elevated structure, thus allowing wildlife passage.

Impacts of the Corcoran Elevated Alternative on wildlife movement corridors would have incremental regional effects. Therefore, the project impacts of the Corcoran Elevated Alternative would result in an effect of moderate intensity under NEPA, and a significant impact under CEQA on wildlife movement corridors.

Corcoran Bypass Alternative

The Corcoran Bypass Alternative passes through the SR 43/SR 155 and Tule River linkages; thus, this alternative would directly and indirectly affect wildlife movement corridors. The Corcoran Bypass Alternative would result in greater impacts on wildlife movement corridors than would the corresponding segment of the BNSF Alternative. The Corcoran Bypass Alternative would affect a small portion of natural lands on the outskirts of the urban area of Corcoran at-grade, where it is possible that wildlife move unobstructed, although habitat value is extremely low.

Impacts of the Corcoran Bypass Alternative on wildlife movement corridors would have incremental regional effects. Therefore, the project impacts of the Corcoran Bypass Alternative would result in an effect of moderate intensity under NEPA, and a significant impact under CEQA on wildlife movement corridors.

Allensworth Bypass Alternative

The Allensworth Bypass Alternative passes through the SR 43/SR 155, Deer Creek–Sand Ridge, and Poso Creek linkages, and has the potential to affect wildlife movement corridors in these linkages. Both the Allensworth Bypass Alternative and the corresponding BNSF Alternative segment would affect natural lands, including annual grasslands, which provide suitable habitat for a number of wildlife species.

The use of the Allensworth Bypass Alternative would create a new wildlife barrier, because it is primarily a new linear corridor constructed predominantly at-grade. However, because the Allensworth Bypass Alternative would not be constructed adjacent to existing infrastructure (e.g., SR 43 and the BNSF railroad), the existing barriers to wildlife movement, and the risk of strikes with vehicles and trains would not be compounded as it would be for the corresponding segment of the BNSF Alternative. In general, the impacts of the Allensworth Bypass Alternative (further fragmentation of the linkage in a new linear corridor) would be less detrimental to wildlife movement corridors than the impacts of the corresponding segment of the BNSF Alternative (further impairment/fragmentation of an existing linear corridor) (Cypher 2010).

Impacts of the Allensworth Bypass Alternative on wildlife movement corridors would have influential regional effects. Therefore, the project impacts of the Allensworth Bypass Alternative would result in an effect of substantial intensity under NEPA and a significant impact under CEQA on wildlife movement corridors.

Wasco-Shafter Bypass Alternative

The Wasco-Shafter Bypass Alternative does not overlap an identified wildlife movement corridor. Both the Wasco-Shafter Bypass Alternative and the corresponding BNSF Alternative segment would not affect identified wildlife movement corridors. Impacts of the Wasco-Shafter Bypass
Alternative on wildlife movement would be minimal and would have little or no regional effects. Therefore, the project impacts of the Wasco-Shafter Bypass Alternative would result in an effect of negligible intensity under NEPA, and a less than significant impact under CEQA on wildlife movement corridors.

Bakersfield South Alternative

The Bakersfield South Alternative passes through the Kern River linkage and has the potential to impact wildlife movement corridors. Project design in this area would use an elevated structure throughout the entire area of Bakersfield for both the Bakersfield South Alternative and the corresponding BNSF Alternative segment (Figure 3.7-4), and would retain opportunities for local urban wildlife movement. The elevated design would minimize the long-term effects to wildlife movement in the Kern River linkage. The use of the Bakersfield South Alternative rather than the corresponding BNSF Alternative would not change the level or degree of impacts because impacts on wildlife movement corridors would be similar.

Impacts of the Bakersfield South Alternative on wildlife movement would be minimal and would have little or no regional effects. Therefore, the project impacts of the Bakersfield South Alternative would result in an effect of negligible intensity under NEPA, and a less than significant impact under CEQA on wildlife movement corridors.

Bakersfield Hybrid Alternative

The Bakersfield Hybrid Alternative passes through the Kern River linkage and has the potential to affect wildlife movement corridors. Project design in this area would use an elevated structure throughout the entire area of Bakersfield for both the Bakersfield Hybrid Alternative and the corresponding segment of the BNSF Alternative (Figure 3.7-4), and would retain opportunities for local urban wildlife movement. The elevated design would minimize the long-term effects on wildlife movement in the Kern River linkage. The use of the Bakersfield Hybrid Alternative rather than the corresponding segment of the BNSF Alternative would not change the level or degree of impacts because impacts on wildlife movement corridors would be similar.

Impacts of the Bakersfield Hybrid Alternative on wildlife movement would be minimal and would have little or no regional effects. Therefore, the project impacts of the Bakersfield Hybrid Alternative would result in an effect of negligible intensity under NEPA, and a less than significant impact under CEQA on wildlife movement corridors.

Heavy Maintenance Facility Alternatives

Table 3.7-18 lists wildlife movement corridors potentially affected by the HMF alternatives. Since HMFs would not result in the placement of a linear barrier and do not occur in areas of natural land, it is unlikely that they would impede wildlife movement. Therefore, the project impacts of the HMFs would result in no effect on wildlife movement corridors under NEPA, and in no impact under CEQA.
Table 3.7-18
Wildlife Movement Corridors Potentially Affected by the
HMF Alternatives during Project Operation

<table>
<thead>
<tr>
<th>HMF Alternatives</th>
<th>Wildlife Movement Corridors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresno Works-Fresno</td>
<td>No Effect/No Impact</td>
</tr>
<tr>
<td>Kings County–Hanford</td>
<td>No Effect/No Impact</td>
</tr>
<tr>
<td>Kern Council of Governments–Wasco</td>
<td>No Effect/No Impact</td>
</tr>
<tr>
<td>Kern Council of Governments–Shafter East</td>
<td>No Effect/No Impact</td>
</tr>
<tr>
<td>Kern Council of Governments–Shafter West</td>
<td>No Effect/No Impact</td>
</tr>
</tbody>
</table>

Station Alternatives

Fresno Station–Mariposa Alternative: Wildlife movement corridors are not mapped within the urbanized footprint of the Fresno Station–Mariposa Alternative. The station has limited potential to disrupt wildlife movement throughout the region. Project impacts at the Fresno Station–Mariposa Alternative would result in no effect on wildlife movement corridors under NEPA, and in no impact under CEQA.

Kings/Tulare Regional Station – West Alternative (at-grade option): Identified wildlife movement corridors are absent within the footprint of the potential Kings/Tulare Regional Station–West Alternative at-grade option. The station has limited potential to disrupt wildlife movement throughout the region, and project impacts from this station would result in no effect on wildlife movement corridors under NEPA, and in no impact under CEQA.

Kings/Tulare Regional Station – West Alternative (below-grade option): Identified wildlife movement corridors are absent within the footprint of the potential Kings/Tulare Regional Station–West Alternative below-grade option. The station has limited potential to disrupt wildlife movement throughout the region, and project impacts from this station would result in no effect on wildlife movement corridors under NEPA, and in no impact under CEQA.

Kings/Tulare Regional Station – East Alternative: Identified wildlife movement corridors are absent within the footprint of the potential Kings/Tulare Regional Station–East Alternative. The station has limited potential to disrupt wildlife movement throughout the region. Project activities at this potential station would result in no effect on wildlife movement corridors under NEPA, and in no impact under CEQA.

Bakersfield Station–North Alternative: Wildlife movement corridors are not present within the footprint of the Bakersfield Station–North Alternative. The Bakersfield Station–North Alternative is limited to urban land uses. Therefore, the project impacts at this station would result in no effect on wildlife movement corridors under NEPA, and in no impact under CEQA.

Bakersfield Station–South Alternative: Wildlife movement corridors are not present within the footprint of the Bakersfield Station–South Alternative. The Bakersfield Station–South Alternative is limited to urban land uses. Therefore, the project impacts at the Bakersfield Station–South Alternative would result in no effect on wildlife movement corridors under NEPA, and no impact under CEQA.

Bakersfield Station–Hybrid Alternative: Wildlife movement corridors are not present within the footprint of the Bakersfield Station–Hybrid Alternative. The Bakersfield Station–Hybrid Alternative is limited to urban land uses. Therefore, the project impacts at the Bakersfield Station–Hybrid
Alternative would result in no effect on wildlife movement corridors under NEPA, and in no impact under CEQA.

3.7.6 Project Design Features

In addition to the mitigation measures described below in Section 3.7.7, multiple project design features have been developed for the Fresno to Bakersfield Section to avoid and minimize potential impacts and effects on biological resources.

At multiple locations, the route of the alternative alignments was altered to avoid impacts and effects to biological resources. From the results of preliminary surveys, which identified areas of high-quality biological and wetland resources in the vicinity of the Colonel Allensworth State Historic Park and Allensworth Ecological Reserve, the Allensworth Bypass was sited to avoid significant impacts on these resources. Engineering changes were made to the alternative alignments in the vicinity of the Corcoran Bypass to avoid impacts on the Tulare Lakebed Mitigation Site and the seasonal wetlands associated with Cross Creek. Additional engineering changes were made along the Wasco-Shafter Bypass to avoid impacts on local development plans.

As discussed in Chapter 2.0, Alternatives, wildlife crossing opportunities will be available through a variety of engineered structures, including dedicated wildlife crossing structures, elevated structures, bridges over riparian corridors, road overcrossings and undercrossings, and drainage facilities (i.e., large-diameter [60- to 120-inch] culverts and paired 30-inch culverts). For a more detailed discussion of the crossing structures, including figures depicting the frequency and locations of these structures, refer to Figures 5-7a through 5-7c and Section 5.6 of the Fresno to Bakersfield Section: Biological Resources and Wetlands Technical Report (Authority and FRA 2012a).

Also, during project design and construction, the Authority and FRA would implement measures to reduce impacts on air quality and hydrology based on applicable design standards. Implementation of these measures would also reduce impacts on biological resources. The design standards applicable to the project are listed in Appendix 2-D and the measures to be applied are summarized in Section 3.3, Air Quality and Global Climate Change and Section 3.8, Hydrology and Water Resources.

3.7.7 Mitigation Measures

The mitigation measures in this section identify avoidance, minimization, and compensation measures to minimize potential impacts and effects on biological resources (e.g., special-status plant and wildlife species, habitats of concern, wildlife movement corridors, and native flora and fauna) by the HST alternative alignments, station alternatives, and HMF alternatives. Many of these mitigation measures have multiple benefits that avoid, protect, or compensate for the impacts and effects on various biological resources.

Implementation of the mitigation measures can be the responsibility of the Authority or its Design-Build Contractor (Contractor). Monitoring will generally be the responsibility of the Contractor, with oversight provided by the Authority during construction. Long-term mitigation monitoring and compensatory mitigation will be the responsibility of the Authority.

As the CEQA lead agency and proponent of this project, the Authority will implement the mitigation measures through its own actions, those of its contractors, and actions taken in cooperation with other agencies and entities. The Authority is ultimately accountable for the overall administration of the mitigation monitoring program and for assisting relevant individuals and parties in their oversight and reporting responsibilities. The responsibilities of mitigation...
implementation, monitoring, and reporting extend to several entities, as outlined in the Mitigation Monitoring Enforcement Plan (MMEP); however, the Authority will bear the primary responsibility for verifying that the mitigation measures are implemented.

Section 3.7.2 presents the regulatory programs that apply to the HST alternatives. Table 3.7-1 addresses the federal requirements and Table 3.7-2 addresses the state requirements. The primary agreements and regulatory requirements include the federal ESA (Section 7), CESA (Section 2081), CWA (Section 404), Porter Cologne Act (Section 401), and State Fish and Game Code (Section 1600).

The mitigation measures presented below were refined in some cases as a result of coordination with federal, state, and local agencies. Representative agencies involved in early coordination include USFWS, USACE, EPA, CDFW, and SWRCB. This coordination effort included consideration of the types, timing, and locations of mitigation measures, including consideration for early implementation, as feasible.

The Authority has been coordinating with the USFWS and CDFW through regular meetings, project-specific site visits, potential mitigation site visits, and permit applications to ensure that proposed mitigation measures are sufficient to address impacts on special-status species and wildlife movement corridors. Comment letters from the California Department of Fish and Wildlife on the mitigation measures have been incorporated into this Final EIR/EIS where feasible and effective. Also, the conservation measures identified in the USFWS Biological Opinion (USFWS 2013a) to avoid, minimize, and reduce potential take of species protected under the federal ESA have been incorporated into this Final EIR/EIS.

Similarly, the Authority has coordinated with EPA and USACE through the Integration Memorandum of Understanding among the FRA, the Authority, USACE, and EPA and the associated Checkpoints and through comment letters received on the Draft EIR/EIS and the Revised DEIR/Supplemental DEIS. These comments were incorporated in this Final EIR/EIS where feasible and effective.

As background, the Memorandum of Understanding established three checkpoints on which the signatory agencies work through the NEPA/Section 404 and Section 408 processes. Coordination efforts include meetings, conference calls, project and mitigation site visits, and review of technical documents. Checkpoint A established the projects purpose and need. Checkpoint B identified the range of alternatives to be studies in the EIR/EIS. Checkpoint C identified the preliminary Least Environmentally Damaging Practicable Alternative (LEDPA).

The Authority has prepared a number of reports related to Checkpoint C that substantiate the conditions described in the Revised DEIR/Supplemental DEIS and discuss at length the condition of jurisdictional waters in the study area. These documents are publicly available on the Authority’s website. These reports are titled Summary Report, Watershed Evaluation Report (Authority and FRA 2013d) (provided as Appendix 3.7-C), and Appendix A, Evaluation of Wetland Condition Using the California Rapid Assessment Method, of the Watershed Evaluation Report (Authority and FRA 2013d) (provided in Appendix 3.7-C). Checkpoint C required a substantial amount of information to evaluate the impacts on aquatic, biological, and other environmental resources. Specifically, Checkpoint C looks closely at both the quantity and the quality of aquatic resources and the associated direct and indirect impacts. This information is presented in detail in the Watershed Evaluation Report, which relies on the existing desktop information and a condition assessment conducted in the field.

As discussed in the Fresno to Bakersfield Section: Watershed Evaluation Report, the aquatic resource impact profile and the subsequent compensatory mitigation are similar across all seven watersheds, except perhaps the Upper Deer–Upper White Watershed (Authority and FRA 2013d).
The Upper Deer–Upper White Watershed contains a significantly greater area of vernal pool landscapes and should be a focus of compensatory mitigation efforts. The Yang, Staffel, Smith Offering, and Davis potential compensatory mitigation properties are all in the Upper Deer–Upper White Watershed.

The 2008 Mitigation Rule states a preference for mitigation using a watershed approach, but acknowledges that for linear projects, where impacts are distributed across multiple watersheds, more ecological functions and values may be created, enhanced, or restored in fewer consolidated mitigation projects. Because of the degraded condition of jurisdictional waters in the region, the focus of compensatory mitigation will be on consolidated mitigation projects because they provide the best opportunity for ecological benefit for the region. Compensatory mitigation may also be consolidated in the watersheds that would experience significant ecological loss of jurisdictional waters in excellent or good condition.

The habitat creation, restoration, and/or revegetation ratios presented here are based upon and ultimately depend on the type of impact (i.e., permanent or temporary), scarcity of the resource, and performance anticipated.

In regards to special-status species, the avoidance, minimization, and mitigation measures are specific to special-status species’ known geographic ranges and their suitable habitats, and species-specific measures will not be required when the habitat or range is not located within the construction footprint.

The following roles and definitions represent the Authority, Contractor, and lead biology positions responsible for monitoring, reporting, and implementing the mitigation measures and associated terms and conditions. Other support roles may include restoration ecologists, landscape architects, and special-status species experts.

- **Mitigation Manager**: The Mitigation Manager provided by the Design-Build Contractor is responsible for overseeing the Environmental Team’s implementation, reporting, and compliance of all project environmental commitments. The Mitigation Manager will support the construction management team. The Project Biologist will report to the Mitigation Manager to verify compliance with biological resources mitigation measures. The Mitigation Manager will report the status of each mitigation measure to the Authority in accordance with the MMEP.

- **Project Biologist, Regulatory Specialist (Waters), Project Botanist**: The Project Biologist(s), Regulatory Specialist(s), and Project Botanist(s) provided by the Design-Build Contractor will represent the construction management team, will report directly to the Authority, will implement the mitigation reflected in the construction drawings and specifications, and will be responsible for reporting and overseeing the biological resources mitigation measures from the Final Fresno to Bakersfield Section EIR/EIS. The Project Biologist(s), Regulatory Specialist(s), Project Botanist(s) will also be responsible for implementing mitigation measures in compliance MMEP and with the terms and conditions outlined in the USFWS, USACE, SWRCB, and CDFW permits. The Project Biologist(s) Regulatory Specialist(s), Project Botanist(s) will report to the overall construction management team Mitigation Manager (Mitigation Compliance Manager), interact with the designated Resident Engineer for the Fresno to Bakersfield Section and work to provide quality assurance on the implementation of the biological resources mitigation program as performed by the Contractor and the designated Project Biological Monitor(s). It is anticipated that the Project Biologist(s), Regulatory Specialist(s), and Project Botanist(s) will have specialized support from other biological monitors and work with the Mitigation Manager during deployment of the monitors and in performance of their respective responsibilities.
• **Project Biological Monitor:** The Project Biological Monitor(s) provided by the Design-Build Contractor will be approved by and report directly to the Project Biologist. The Project Biological Monitor will be present onsite, within a reasonable monitoring distance, during all ground-disturbing activities that have the potential to affect biological resources, as directed by the Project Biologist and will be the principal agent(s) in the direct implementation of the MMEP and compliance assurance.

These mitigation measures are based on mitigation strategies from the Statewide Program EIR/EIS, which have been refined and adapted for this proposed project. These mitigation measures will be incorporated into the MMEP and grouped by construction period impacts and project impacts. Construction period mitigation measures include all temporary impacts and effects associated with ground-disturbing activities. Project mitigation measures include all permanent impacts and effects associated with ground-disturbing activities, as well as impacts and effects from HST operation and maintenance activities.

3.7.7.1 Common Mitigation Measures for Biological Resources

The following common mitigation measures shall be implemented, as applicable, during construction period impacts and project impacts on avoid and/or minimize impacts and effects on biological resources. In addition, resource-specific mitigation measures shall be implemented to directly or indirectly avoid or minimize the impacts and effects to the specific biological resource (e.g., special-status species, habitats of concern, and wildlife movement corridor). Many of the common mitigation measures apply throughout the biological resources program and cover multiple species and habitats. The conservation measures identified in the USFWS Biological Opinion (USFWS 2013a) and the Supplemental Biological Assessment (Authority and FRA 2013) to avoid, minimize, and reduce potential take of species protected under the federal ESA have been incorporated into this Final EIR/EIS and include all of the common mitigation measures.

In addition, mitigation measures will be applied as described in Section 3.4, Noise and Vibration; Section 3.15, Parks, Recreation, and Open Space; and Section 3.16, Aesthetics and Visual Resources to avoid and minimize impacts and effects on biological resources. These measures are:

- **N&V-MM#3.** Implement Proposed California High-Speed Train Project Noise Mitigation Guidelines.
- **PC-MM#1.** Compensation for Staging in and Temporary Closures of Park Property During Construction.
- **PP-MM#1.** Acquisition of Park Property.
- **AV-MM#1b.** Minimize Light Disturbance during Construction.

BIO-MM#1. Designate Project Biologist(s), Regulatory Specialist (Waters), Project Botanist, and Project Biological Monitor(s). A Project Biologist will be designated by the Mitigation Manager to oversee regulatory compliance requirements and monitor the restoration activities associated with ground-disturbing activities in accordance with the adopted mitigation measures and applicable laws. The Project Biologist, Regulatory Specialist (Waters), and Project Botanist are responsible for the timely implementation of the biological mitigation measures as outlined in the MMEP, construction documents, and pertinent resource agency permits. Resumes for the Designated Project Biologist(s), Regulatory Specialist(s) (Waters), Project Botanist(s) and Project Biological Monitors(s) must be submitted to the USFWS at least 15 days before the start of construction. Additional duties of the Project Biologist(s), Regulatory Specialist(s) (Waters), and Project Botanist(s) include reviewing design documents and construction schedules, determining project biological monitoring needs, and guiding and directing the work of the Project Biological Monitors.
The duties of the Project Biological Monitor include monitoring construction crew activities, as needed, to document applicable mitigation measures and permit conditions. The Project Biologist(s), Regulatory Specialist(s) (Waters), Project Botanist(s), and the Project Biological Monitor(s) report to the Mitigation Manager. The Project Biologist(s), Regulatory Specialist(s) (Waters), Project Botanist(s) and/or the Project Biological Monitor(s) may require special approval from the USFWS and CDFW to implement certain mitigation measures. In these circumstances, they are referred to as agency-approved biologist(s).

BIO-MM#2. Regulatory Agency Access. If requested, before, during, or on completion of ground-disturbing activities, the Contractor will allow access by USFWS, USACE, SWRCB, and CDFW staff to the construction site. Because of safety concerns, all visitors will be required to check in with the Contractor before accessing the construction site. If agency personnel access the construction site, the Project Biologist will prepare a memorandum within 1 day of the visit to document agency access and the issues raised during the field meeting. This memorandum will be submitted to the Mitigation Manager. Any non-compliance issues will be reported to the Contractor and Authority or its designee.

BIO-MM#3. Prepare and Implement a Worker Environmental Awareness Program (WEAP). Before the start of ground-disturbing activities, the Project Biologist, Regulatory Specialist (Waters), and Project Botanist will prepare and implement a WEAP for construction crews. WEAP training materials will include the following: discussion of the federal Endangered Species Act (federal ESA), the California Endangered Species Act (CESA), the Bald and Golden Eagle Protection Act (BGEPA), the Migratory Bird Treaty Act (MBTA), and the Clean Water Act (CWA); the consequences and penalties for violation or noncompliance with these laws and regulations and project permits; identification of special-status plants, special-status wildlife, jurisdictional waters, and special-status plant communities and explanations about their value; hazardous substance spill prevention and containment measures; the contact person in the event of the discovery of a dead or injured wildlife species; and review of mitigation measures. In the WEAP, construction timing in relation to species' habitat and life-stage requirements will be detailed and discussed on project maps, which will show areas of planned minimization and avoidance measures.

A fact sheet conveying this information will be prepared by the Project Biologist, Regulatory Specialist (Waters), and Project Botanist for distribution to the construction crews and to others who enter the construction footprint. On completion of the WEAP training, construction crews will sign a form stating that they attended the training, understood the information presented, and will comply with the WEAP requirements. The Project Biologist, Regulatory Specialist (Waters), and Project Botanist will submit the signed WEAP training forms to the Mitigation Manager on a monthly basis. Construction crews will be informed during the WEAP training that, except when necessary as determined in consultation with the Project Biologist, Regulatory Specialist (Waters), and Project Botanist travel within the marked project site will be restricted to established roadbeds. Established roadbeds include all pre-existing and project-constructed unimproved and improved roads.

BIO-MM#4. Prepare and Implement a Weed Control Plan and Annual Vegetation Control Plan. A construction-phase Weed Control Plan and an operation phase Annual Vegetation Control Plan will be developed and implemented. Before the start of ground-disturbing activities, the Project Botanist will prepare and implement a Weed Control Plan to minimize or avoid the spread of weeds during ground-disturbing activities.

The Weed Control Plan will address the following:

- Schedule for noxious weed surveys to be conducted in coordination with the Biological Resources Management Plan (BRMP) (BIO-MM#5).
The success criteria for noxious and invasive weed control, as established by a qualified biologist. The success criteria will be linked to the Biological Resources Management Plan [BRMP] (BIO-MM#5) standards for onsite work during construction. In particular, the criteria will limit the introduction and spread of highly invasive species, as defined by the California Invasive Plant Council (CalIPC), to less than or equal to the pre-disturbance conditions in areas temporarily impacted by construction activities. If invasive species cover is found to exceed by 10% the pre-disturbance conditions during monitoring—or is 10% more compared with a similar, nearby reference site with similar vegetation communities and management—a control effort will be implemented. If the target, or other success criteria identified in the BRMP, has not been met by the end of the monitoring and implementation period, the Authority or its designee will continue the monitoring and control efforts, and remedial actions would be identified and implemented until the success criteria are met. Depending on monitoring results, additional or revised measures may be needed to ensure that the introduction and spread of noxious weeds are not promoted by the construction and operation of the project.

Provisions to ensure that the development of the Weed Control Plan will be coordinated with development of the Restoration and Revegetation Plan (RRP) (BIO-MM#6) so that the RRP incorporates measures to reduce the spread and establishment of noxious weeds, and incorporates percent cover of noxious weeds into revegetation performance standards.

Identification of weed control treatments, including the use of permitted herbicides, and manual and mechanical removal methods. Herbicide application will be restricted from use in Environmentally Sensitive Areas and on compensatory mitigation sites, which are defined in BIO-MM#7, Delineate Environmentally Sensitive Area and Environmental Restricted Area (on plans and in field).

Determination of timing of the weed control treatment for each plant species.

Identification of fire prevention measures.

During operation, the Authority will generally follow the procedures established in Chapter C2 of the Caltrans Maintenance Manual to manage vegetation on Authority property (Caltrans 2010). Vegetation would be controlled by chemical, thermal, biological, cultural, mechanical, structural, and manual methods. A separate plan, the Annual Vegetation Control Plan, would also be developed each winter for implementation no later than April 1 of each year. That plan would consist of site-specific vegetation control methods, as outlined below:

- Chemical vegetation control noting planned usage.
- Mowing program.
- Other non-chemical vegetation control plans (manual, biological, cultural, thermal [includes the use of propane heat or steam and is not specific to controlled burning] and structural).
- List of sensitive areas, including areas that support special-status plants or host plants for the valley elderberry longhorn beetle, where the vegetation control methods will be limited.
- Other chemical pest control plans (e.g., insects, snail, rodent).

Only Caltrans-approved herbicides will be used in the vegetation control program. Pesticide application will be conducted in accordance with all requirements of the California Department of Pesticide Regulation and County Agricultural Commissioners by certified pesticide applicators. Noxious/invasive weeds will be treated where requested by County Agricultural Commissioners. The Authority will cooperate in area-wide control of noxious/invasive weeds if established by local agencies. Farmers/landowners who request weed control on state right-of-way that is not identified in the annual vegetation control plan will be encouraged to submit a permit request application for weed control that identifies the target weeds and control method desired.
The contractor will implement the Weed Control Plan during the construction period. The Authority or its designee will require that HST maintenance crews follow the guidelines in the Weed Control Plan and Annual Vegetation Control Plan during project operation. The Authority or its designee will appoint the responsible party during the operations period to ensure the Annual Vegetation Control Plan is being carried out appropriately and effectively. A monthly memorandum will be prepared by the Project Botanist to document the progress of the plan and its implementation.

BIO-MM#5. Prepare and Implement a Biological Resources Management Plan. During final design, the Mitigation Manager or designee (Project Biologist, Regulatory Specialist (Waters), or Project Botanist) will prepare the BRMP and assemble the biological resources mitigation measures. The BRMP will include terms and conditions from applicable permits and agreements and make provisions for monitoring assignments, scheduling, and responsibility. The BRMP will also include habitat replacement and revegetation, protection during ground-disturbing activities, performance (growth) standards, maintenance criteria, and monitoring requirements for temporary and permanent native plant community impacts. The parameters for the BRMP will be formed with the mitigation measures from this project-level EIR/EIS, including terms and conditions as applicable from the USFWS, USACE, SWRCB, and CDFW permits.

The goal of the BRMP is to provide an organized reporting tool to ensure that the mitigation measures and terms and conditions are implemented in a timely manner and are reported on. These measures, terms, and conditions include all avoidance, minimization, repair, mitigation, and compensatory actions stated in the mitigation measures or terms and conditions from the permits referenced above. These measures, terms, and conditions are tracked through final design, implementation, and post-construction phases.

The BRMP will help the long-term perpetuation of biological resources within the temporarily disturbed areas and protect adjacent targeted habitats. The BRMP will contain, but not be limited to, the following information:

a. A master schedule that shows that construction of the project, preconstruction surveys, and establishment of buffers and exclusions zones to protect sensitive biological resources.

b. Specific measures for the protection of special-status species.

c. Identification (on construction plans) of the locations and quantity of habitats to be avoided or removed, along with the locations where habitats are to be restored.

d. Procedures for vegetation analyses of temporarily affected habitats to approximate their relative composition and procedures for site preparation, irrigation, planting, and maintenance. This information may be used to determine the requirements of the revegetation areas for both onsite temporary impacts and offsite compensatory sites.

e. Sources of plant materials and methods of propagation.

f. Identification of specific parameters consistent with mitigation ratios and permit conditions for determining the amount of replacement habitat for temporary disturbance areas.

g. Specification of parameters for maintenance and monitoring of re-established habitats, including weed control measures, frequency of field checks, and monitoring reports for temporary disturbance areas.

h. Specification of performance standards for the re-established plant communities within the construction limits.
i. Specification of the remedial measures to be taken if performance standards are not met (e.g., a form of adaptive management).

j. Methods and requirements for monitoring restoration/replacement efforts, which will be a combination of qualitative and quantitative data consistent with mitigation measures and permit conditions.

k. Measures to preserve topsoil and control erosion.

l. Design of protective fencing around Environmentally Sensitive Areas (ESAs), environmentally restricted areas (ERAs), and the construction staging areas.

m. Specification of the locations and quantities of gallinaceous guzzlers (catch basin/artificial watering structures) and the monitoring of water levels in them.

n. Locations of trees to be protected as wildlife habitat (roosting sites) and locations for planting replacement trees.

o. Specification of the purpose, type, frequency, and extent of chemical use for insect and disease control operations as part of vegetative maintenance within sensitive habitat areas.

p. Specific construction monitoring programs for habitats of concern and special-status species, as needed.

q. Specific measures for the protection of vernal pool habitat and riparian areas. These measures may include erosion and siltation control measures, protective fencing guidelines, dust control measures, grading techniques, construction area limits, and biological monitoring requirements.

r. Provisions for biological monitoring during ground-disturbing activities to confirm compliance and success of protective measures. The monitoring procedures will (1) identify specific locations of wildlife habitat and sensitive species to be monitored; (2) identify the frequency of monitoring and the monitoring methods (for each habitat and sensitive species to be monitored); (3) list required qualifications of biological monitor(s), and (4) identify the reporting requirements.

BIO-MM#6. Prepare and Implement a Restoration and Revegetation Plan. During final design, the Project Botanist will prepare a Restoration and Revegetation Plan (RRP) for temporarily disturbed upland communities. (Site restoration will also be conducted to restore temporary impacts on valley foothill riparian areas [BIO-MM#47] and jurisdictional waters [BIO-MM#48].) In the RRP, impacts on habitat subject to temporary ground disturbances that will require decompaction or re-grading will be addressed, if appropriate. The Project Biologist will approve the seed mix. The standards for onsite work during construction will limit highly invasive species, as defined by the California Invasive Plant Council, to less than 10% greater than the pre-disturbance condition or as determined through a comparison with an appropriate reference site with similar natural communities and management.

During ground-disturbing activities, the Contractor will implement the RRP in temporarily disturbed areas. The Project Botanist will prepare and submit compliance reports to the Mitigation Manager to document implementation and performance of the RRP.

BIO-MM#7. Delineate Environmentally Sensitive Areas and Environmentally Restricted Areas (on plans and in field). Before the start of ground-disturbing activities, the Project Biologist, Regulatory Specialist (Waters), and Project Botanist will verify that ESAs and ERAs are delineated on final construction plans (including grading and landscape plans) and in
the field and will update as necessary. ESAs are areas within the construction zone, or on compensatory mitigation sites, containing suitable habitat for special-status species and habitats of concern that may allow construction activities but have restrictions based on the presence of special-status species or habitats of concern at the time of construction. ERAs are sensitive areas that are typically outside the construction footprint that must be protected in place during all construction activities.

Before and during the implementation of ground-disturbing activities, the Project Biologist, Regulatory Specialist (Waters), and Project Botanist will mark ESAs and ERAs with high-visibility temporary fencing, flagging, or other agency-approved barriers to prevent encroachment of construction personnel and equipment. Sub-meter accurate Global Positioning System (GPS) equipment will be used to delineate all ESAs and ERAs. The Contractor will remove ESA and ERA fencing when construction is complete or when the resource has been cleared according to agency permit conditions in the MMEP and construction drawings and specifications. The Project Biologist, Regulatory Specialist (Waters), and Project Botanist will submit a memorandum regarding the field delineation and installation of all ESAs/ERAs to the Mitigation Manager.

BIO-MM#8. Wildlife Exclusion Fencing. The Contractor, under the supervision of the Project Biologist will install wildlife-specific exclusion barriers at the edge of the construction footprint. Exclusion barriers will be made of durable material, regularly maintained, and installed below-grade by the Contractor under the supervision of the Project Biologist. Wildlife exclusion fencing will be installed along the outer perimeter of ESAs and ERAs and below-grade (e.g., 6 to 10 inches below-grade). The design specifications of the exclusion fencing will be determined through consultation with USFWS and/or CDFW. The wildlife exclusion barrier will be monitored, maintained at regular intervals throughout construction, and removed after the completion of major construction activities. The Project Biologist will submit a memorandum to the Mitigation Manager to document compliance with this measure.

BIO-MM#9. Equipment Staging Areas. Before the start of ground-disturbing activities, the Project Biologist, Regulatory Specialist (Waters), and Project Botanist will confirm that staging areas for construction equipment are outside areas of sensitive biological resources, including habitat for special-status species, habitats of concern, and wildlife movement corridors, to the extent feasible. The Project Biologist, Regulatory Specialist (Waters), and Project Botanist will submit a memorandum to the Mitigation Manager to document compliance with this measure.

BIO-MM#10. Mono-Filament Netting. Before and during the implementation of ground-disturbing activities, the Project Biologist will verify that the Contractor is not using plastic mono-filament netting (erosion-control matting) or similar material in erosion control materials; acceptable substitutes include coconut coir matting, tackified hydroseeding compounds, rice straw wattles (e.g., Earthsaver wattles: biodegradable, photodegradable, burlap), and other reusable erosion, sediment, and wildlife control systems that may be approved by the regulatory agencies (e.g., ERTEC Environmental Systems products). The Project Biologist will submit memoranda to the Mitigation Manager to document compliance with this measure; the memoranda will be submitted monthly or as appropriate throughout project construction.

BIO-MM#11. Vehicle Traffic. During ground-disturbing activities, the Contractor will restrict project vehicle traffic within the construction area to established roads, construction areas, and other designated areas. The Contractor will establish vehicle traffic in locations disturbed by previous activities to prevent further adverse effects, require observance of a 15 mile per hour (mph) speed limit for construction areas with potential special-status species habitat, clearly flag and mark access routes, and prohibit off-road traffic. The Project Biologist will submit a memorandum to the Mitigation Manager to document compliance with this measure; memoranda will be submitted on a weekly basis or as appropriate throughout project construction.
BIO-MM#12. Entrapment Prevention. To prevent inadvertent entrapment of protected species, the Contractor, under the guidance of the Project Biologist, will cover all excavated, steep-sided holes or trenches more than 8 inches deep at the close of each work day with plywood or similar materials or provide a minimum of one escape ramp per 10 feet of trenching (with slopes no greater than a 3:1) constructed of earth fill or wooden planks. The Project Biologist will thoroughly inspect holes and trenches for trapped animals before leaving the construction site each day.

The Contractor will either screen, cover, or store more than 1 foot off the ground all construction pipe, culverts, or similar structures with a diameter of 3 inches or greater that are stored at the construction site for one or more overnight periods and these pipes, culverts, and similar structures will be inspected by the Project Biologist for wildlife before the material is moved, buried, or capped. The Project Biologist will clear stored material for common and special-status wildlife species before the pipe is subsequently buried, moved, or capped (covered). The Project Biologist will submit memoranda to the Mitigation Manager to document compliance with this measure; the memoranda will be submitted on a weekly basis or as appropriate throughout project construction.

BIO-MM#13. Work Stoppage. During ground-disturbing activities, the Project Biologist, Regulatory Specialist (Waters), and Project Botanist or Project Biological Monitor will halt work in the event that a special-status wildlife species gains access to the construction footprint. This work stoppage will be coordinated with the resident engineer and/or the Authority or its designee. The Contractor will suspend ground-disturbing activities in the immediate construction area where the potential construction activity could result in “take” of special-status wildlife species; work may continue in other areas. Before construction, the Contractor will obtain written permission from CDFW to capture and relocate any non-listed wildlife species from within the project footprint.

The Contractor will continue the suspension until the special-status species individual leaves voluntarily, or is relocated to a release area using USFWS- and/or CDFW-approved handling techniques and relocation methods, or as required by USFWS or CDFW. The Project Biologist, Regulatory Specialist (Waters), and Project Botanist will submit a memorandum to the Mitigation Manager to document compliance within 1 day of the work stoppage and subsequent action.

BIO-MM#14. “Take” Notification and Reporting. The Contractor’s designated Project Biologist, Regulatory Specialist (Waters), Project Botanist, or Project Biological Monitor will immediately notify the Mitigation Manager in the event of an accidental death or injury to a federal- or state-listed species during project activities. The Project Biologist will then notify USFWS and/or CDFW within 24 hours in the event of an accidental death or injury to a federal- or state-listed species during project activities. The Project Biologist will submit a memorandum to the Mitigation Manager to document compliance with this measure. The memorandum will also identify suggested revisions to the construction activities or additional measures that will be implemented to minimize or prevent future impacts.

BIO-MM#15. Post-Construction Compliance Reports. After each construction package, construction phase, permitting phase, or other portion of the HST section as defined by Authority-contractor design/build contracts is completed, the Mitigation Manager, or designee, will submit post-construction compliance reports consistent with the requirements of the protocols of each appropriate agency (e.g., USFWS, CDFW), including compliance with regulatory agency permits. The Mitigation Manager will submit a memorandum to the regulatory agencies to document compliance with this measure. The frequency of the memorandum compilation and submission will be consistent with the requirements in the regulatory agency permits.
3.7.7.2 Construction Period Mitigation Measures

Special-Status Species

In addition to the common mitigation measures (BIO-MM#1 through BIO-MM#15) that apply to all biological resources, specific measures will be implemented to avoid and/or minimize project impacts and effects on special-status species. As applicable, project mitigation measures (BIO-MM#54 through BIO-MM#61; BIO-MM#51 through BIO-MM#53; BIO-MM#66 through BIO-MM#67) may also reduce the impacts on special-status species during the construction period. Furthermore, in some instances mitigation measures associated with habitats of concern and wildlife movement corridors during the construction period and/or project operation may also directly or indirectly avoid and/or minimize impacts and effects on special-status species.

The section presents the mitigation measures that will be implemented to avoid and minimize impacts and effects to special-status species during construction period impacts and is organized by species guild.

Special-Status Plant Species and Special-Status Plant Communities

The implementation of the applicable common mitigation measures (BIO-MM#1 through BIO-MM#15) will also directly or indirectly reduce impacts and effects on special-status plant species and special-status plant communities, as applicable. In addition, the following resource-specific mitigation measures are proposed during construction period impacts.

BIO-MM#16. Conduct Protocol-Level Preconstruction Surveys for Special-Status Plant Species and Special-Status Plant Communities. The Project Botanist will conduct protocol-level, preconstruction botanical surveys for special-status plant species and special-status plant communities in all potentially suitable habitats. The surveys will be conducted during the appropriate blooming period(s) for the species before the start of ground-disturbing activities for salvage and relocation activities.

The Project Botanist will mark the locations of all special-status plant species and special-status plant communities observed for the Contractor to avoid. Before the start of ground-disturbing activities, all populations of special-status plant species and special-status plant communities identified during preconstruction surveys within 100 feet of the construction footprint will be protected and delineated by the Contractors (directed by the Project Botanist) as ERAs. As appropriate, the Project Botanist will update the mapping of special-status species or habitats of concern within the construction limits based on resource agency permits.

Portions of the construction footprint that support special-status plant species that will be temporarily disturbed will be restored onsite to preconstruction conditions. Before disturbance, preconstruction conditions, including species composition, species richness, and percent cover of key species will be documented, and photo points will be established.

If special-status plant species cannot be avoided, mitigation for impacts on these species will be documented (density, percent cover, key habitat characteristics, including soil type, associated species, hydrology, topography, and photo documentation of preconstruction conditions) and incorporated into a relocation/compensation program, as defined in BIO-MM#17. The Project Botanist will provide verification of survey results and report findings through a memorandum to the Mitigation Manager to document compliance with this measure.

BIO-MM#17. Prepare and Implement Plan for Salvage, Relocation and/or Propagation of Special-Status Plant Species. The Project Botanist will prepare a plan before the start of ground-disturbing activities to address monitoring, salvage, relocation, and propagation of special-status plant species. The relocation or propagation of plants and seeds will
be performed at a suitable mitigation site approved by the appropriate regulatory agencies, and as appropriate per species. Documentation will include provisions that address the techniques, locations, and procedures required for the successful establishment of the plant populations. The plan will include provisions for performance that address survivability requirements, maintenance, monitoring, implementation, and the annual reporting requirements. Permit conditions issued by the appropriate resource agencies (e.g., USFWS, CDFW) will guide the development of the plan and performance standards. The Project Botanist will submit a memorandum to the Mitigation Manager to document compliance with this measure.

Special-Status Wildlife Species

Invertebrates

The implementation of the applicable common mitigation measures (BIO-MM#1 through BIO-MM#15), invertebrate mitigation measures (BIO-MM#55 and BIO-MM#56), and other mitigation measures pertaining to the jurisdictional waters (including vernal pools) and special-status plant communities (including valley foothill riparian areas) will also directly or indirectly reduce project impacts and effects on special-status invertebrate species, as applicable. In addition, the following species-specific mitigation measures are proposed.

Vernal Pool Branchiopods

BIO-MM#18. Conduct Preconstruction Sampling and Assessment for Vernal Pool Fauna. Before the start of ground-disturbing activities, the Project Biologist will conduct preconstruction aquatic assessment and sampling in seasonal wetlands and vernal pools in the construction footprint. The approved biologists will visit the sites after initial storm events to determine when seasonal wetlands and vernal pools have been inundated. A seasonal wetland/vernal pool is considered to be inundated when it holds greater than 3 cm of standing water 24 hours after a rain event. Approximately 2 weeks after the pools are inundated, the biologists will conduct general aquatic surveys in appropriate seasonal wetland and vernal pool habitats.

The sampling is an assessment that will be useful in understanding the species present and will help guide the implementation of the performance standards to be consistent with BIO-MM#20: Implement and Monitor Vernal Pool Protection. The Project Biologist will submit a report to the Mitigation Manager and Authority or its designee within 30 days of completing the field work. The report will provide the documentation and the results of the sampling, including the results of the data collection and a comparison with the performance standards.

BIO-MM#19. Seasonal Vernal Pool Work Restriction. For seasonal avoidance of special-status vernal pool branchiopods and vernal-pool-dependent species (e.g., vernal pool branchiopods, western spadefoot toads, California tiger salamanders), the Contractor will not work within 250 feet of suitable aquatic habitats (e.g., vernal pools, seasonal wetlands) from October 15 to June 1 (corresponding to the rainy season) or as determined through informal or formal consultation with the USFWS or USACE. Ground-disturbing activities may begin once the habitat is no longer inundated for the season and it is after April 15. If any work remains to be completed after October 15, the Project Biologist will install exclusion fencing and erosion control measures in those areas where construction activities need to be completed. The Project Biologist will document compliance through memoranda to the Mitigation Manager during the establishment of the fencing activities.

BIO-MM#20. Implement and Monitor Vernal Pool Protection. Although all temporary impacts on vernal pools are considered to be permanent and will be mitigated through offsite compensatory mitigation (see BIO-MM#63), vernal pools within the temporary construction footprint that can be avoided will be protected by erecting exclusion fencing.
For impacts on vernal pools within the temporary construction footprint that cannot be avoided, the Contractor, with guidance from the Regulatory Specialist (Waters), will place rinsed gravel within the affected vernal pools and will cover the affected vernal pools with geotextile fabric before the start of ground-disturbing activities to minimize damage to the soils and protect the contours. The Contractor, under the direction of the Regulatory Specialist (Waters), will collect a representative sampling of soils from the vernal pools before initiating ground-disturbing activities within the vernal pools. The representative soil samples will contain viable plant seeds and vernal pool branchiopod cysts to be preserved from the vernal pools. These samples may be incorporated into other vernal pools, as applicable, with USFWS and/or CDFW consultation. The Contractor will implement these measures within temporary impact areas adjacent to or within the construction footprint. Resource agency consultations with the USFWS and USACE will occur as needed and based on permit conditions.

The Regulatory Specialist (Waters) will submit a memorandum on a weekly basis or at other appropriate intervals to the Mitigation Manager to document compliance with this measure.

Because impacts to vernal pools within the temporary construction footprint are considered to be permanent impacts, these impacts will be mitigated through offsite mitigation, as described in BIO-MM#63. The Contractor will obtain approval from USACE and SWRCB before the implementation of the above-described mitigation measures, for any unanticipated temporary impacts on vernal pools.

Valley Elderberry Longhorn Beetle

BIO-MM#21. Implement Avoidance and Minimization Measures for the Valley Elderberry Longhorn Beetle. Before and during the implementation of ground-disturbing activities, the Project Biologist will implement the avoidance and minimization measures detailed in the *Conservation Guidelines for the Valley Elderberry Longhorn Beetle* (USFWS 1999a). These measures include conducting protocol-level presence/absence surveys for this species, establishing and maintaining appropriate buffer areas around elderberry plants, restricting the use of chemicals that might harm beetles, and mowing restrictions. After ground-disturbing activities are completed, any damage to temporarily disturbed buffer areas surrounding elderberry shrubs will be restored as detailed in the *Conservation Guidelines for the Valley Elderberry Longhorn Beetle* (USFWS 1999a). The Project Biologist will submit a memorandum, on a weekly basis or at other appropriate intervals, to the Mitigation Manager to document compliance with this measure.

Reptiles and Amphibians

The common mitigation measures (BIO-MM#1 through BIO-MM#15), Mitigation Measures BIO-MM#56 and BIO-MM#57, and other mitigation measures pertaining to the jurisdictional waters (including vernal pools) will directly and/or indirectly reduce impacts and effects on reptiles and amphibians and will be implemented during construction period impacts as applicable. Also, the following species-specific mitigation measures are proposed to be implemented during the construction period.

Special-Status Reptile and Amphibian Species: Western Spadefoot, Western Pond Turtle, Silvery Legless Lizard, San Joaquin Whipsnake, and Coast Horned Lizard

BIO-MM#22. Conduct Preconstruction Surveys for Special-Status Reptile and Amphibian Species. Before the start of ground-disturbing activities, the Project Biologist will conduct preconstruction surveys in suitable habitats to determine the presence or absence of special-status reptiles and amphibian species within the construction footprint. Surveys will be conducted no more than 30 days before the start of ground-disturbing activities and will be phased with project build-out.
The results of the preconstruction survey will be used to guide the placement of the environmentally sensitive areas, ERAs, and wildlife exclusion fencing. The Project Biologist will submit a memorandum, on a weekly basis or at other appropriate intervals, to the Mitigation Manager to document compliance with this measure.

BIO-MM#23. Conduct Special-Status Reptile and Amphibian Monitoring, Avoidance, and Relocation. During ground-disturbing activities, the Project Biological Monitor will observe all construction activities in habitat that supports special-status reptiles and amphibians. If suitable habitat is present and environmentally sensitive areas are deemed necessary, the Project Biological Monitor will conduct a clearance survey within the area for special-status reptiles and amphibians after wildlife exclusion fencing is installed. If a special-status reptile or amphibian is present during construction, the Contractor will avoid the special-status reptile or amphibian species, except when necessary. Otherwise, the Project Biological Monitor will relocate special-status reptiles or amphibians (other than California tiger salamander) found in the Environmentally Sensitive Area or construction footprint to an area outside the construction area as determined through consultation with USFWS and/or CDFW. If necessary, clearance surveys will be conducted daily. The Project Biologist will submit a memorandum, on a weekly basis or at other appropriate intervals, to the Mitigation Manager to document compliance with this measure.

California Tiger Salamander

BIO-MM#24. Conduct Protocol and Preconstruction Surveys for California Tiger Salamander. In the annual grassland and pasture habitats in the Cross Creek grassland region, protocol-level surveys will be conducted in accordance with the Interim Guidance on Site Assessment and Field Surveys for Determining Presence or a Negative Finding of the California Tiger Salamander (USFWS and CDFG 2003). The purpose of these surveys will be to determine presence or absence of the California tiger salamander within the study area. The protocol-level surveys will be conducted by an agency-approved biologist designated by the Authority or its designee or the Contractor's designated Project Biologist.

Before the start of ground-disturbing activities, a qualified, agency-approved biologist (designated by the Project Biologist) will conduct visual preconstruction surveys in suitable habitats in the Cross Creek grassland region. Surveys will be conducted no more than 30 days before the start of ground-disturbing activities and will be phased with project build-out.

In the unlikely event that California tiger salamander individuals are found within the project footprint during protocol-level preconstruction surveys, the Authority will contact the USFWS and CDFW to identify appropriate avoidance and minimization measures to be implemented for this species.

The Project Biologist will submit a memorandum, on a weekly basis or at other appropriate intervals, to the Mitigation Manager to document compliance with this measure.

BIO-MM#25. Implement Avoidance and Minimization Measures for California Tiger Salamander. The measures listed below will be implemented in the Cross Creek grassland region to avoid and minimize potential adverse effects to this species:

- The Contractor, under the direction of the Project Biologist, will install, maintain, and monitor exclusion fencing along the perimeter of the construction footprint. The Project Biological Monitor will monitor the exclusion fencing installation to document compliance with the terms and conditions of the USFWS Biological Opinion. Exclusion fencing will be composed of a combination of high-visibility construction fence and wildlife exclusion fence. Exclusion fencing must be trenched into the soil at least 4 inches in depth, with the soil compacted against both sides of the fence for its entire length to prevent central California tiger...
salamanders from passing under the fence. Barriers must be inspected by an USFWS-approved Project Biological Monitor at least twice weekly on non-consecutive days outside of the breeding season. Barriers will be inspected daily following any rain event and during months when juvenile central California tiger salamanders are most likely emigrating from their breeding ponds in search of burrows in surrounding upland habitat. Barriers will be installed by the contractor with turnarounds at any access openings needed in the fencing, to redirect central California tiger salamanders away from openings.

- The Contractor will not conduct construction activities within 250 feet of potential California tiger salamander breeding habitat during the wet season (October 15 through June 1); however, construction activities may begin once the habitat is no longer inundated for the season and it is after April 15.

The Project Biologist will submit a memorandum, on a weekly basis or at other appropriate intervals, to the Mitigation Manager to document compliance with this measure.

Blunt-Nosed Leopard Lizard

The blunt-nosed leopard lizard is a California Fully Protected Species. As such, measures must be taken to completely avoid (not just minimize) take of this species.

BIO-MM#26. Conduct Protocol-Level Surveys for Blunt-Nosed Leopard Lizard. The Project Biologist will conduct protocol-level surveys in suitable habitats for the blunt-nosed leopard lizard within 1 year of each construction phase. These surveys will be conducted in areas of potential blunt-nosed leopard lizard habitat in accordance with the Approved Survey Methodology for the Blunt-Nosed Leopard Lizard (CDFG 2004). The Project Biologist will submit a memorandum within 30 days after the completion of the protocol-level surveys to the Mitigation Manager to document compliance with this measure.

BIO-MM#27. Phased Preconstruction Surveys for Blunt-Nosed Leopard Lizard. The Project Biologist will conduct visual preconstruction surveys in areas of potential blunt-nosed leopard lizard habitat no more than 30 days before the ground-disturbing activities associated with each construction phase. The Project Biological Monitor will conduct daily clearance surveys before construction activities. The Project Biologist will submit a memorandum, on a weekly basis or at other appropriate intervals, to the Mitigation Manager to document compliance with this measure.

BIO-MM#28. Blunt-Nosed Leopard Lizard Avoidance. During the active season (April 15 through October 15), in areas where blunt-nosed leopard lizards or blunt-nosed leopard lizard signs are present, the following measures will be implemented:

- Following the phased preconstruction survey for blunt-nosed leopard lizard within the construction footprint (see BIO-MM#27), if active burrows or egg clutch sites are identified within the construction footprint, the Contractor and Project Biologist will establish, maintain, and monitor 50-foot buffers around active burrows and egg clutch sites. The 50-foot buffers will be established around the active burrow and clutch sites in a manner that allows for blunt-nosed leopard lizard to leave the construction footprint after the young have hatched. Project activities within the 50-foot buffers, including vegetation clearing and grubbing (as described below), will be prohibited until the eggs have hatched and blunt-nosed leopard lizard have been allowed to leave the construction footprint, as determined by the Project Biologist.

- Following the phased preconstruction survey for blunt-nosed leopard lizard within the construction footprint (see BIO-MM#27), if no active burrows or egg clutch sites are identified within the construction footprint, the Contractor, under the direction of the Project
Biologist, will conduct vegetation clearing and grubbing activities with hand tools. Cleared vegetation will be cut to 4 inches above the ground level, and all trimmings will be removed from the construction footprint. The vegetation-free work area will be allowed to sit undisturbed for a minimum of 72 hours to allow blunt-nosed leopard lizards to passively relocate from the site. A follow-up preconstruction survey will be conducted in the vegetation-free work area to look for blunt-nosed leopard lizards or their sign. Any blunt-nosed leopard lizards observed during the follow-up survey will be allowed to leave the work site on their own accord. Immediately after the follow-up preconstruction survey of the vegetation-free work area, the construction footprint will be delineated with high-visibility construction fence and a wildlife exclusion fence with “a non-gaping, non-climbable barrier using a rigid and non-climbable material.” The vegetation-free work area within the wildlife exclusion fence will be maintained by the Contractor and monitored daily by the Project Biologist.

- The Contractor will conduct ground-disturbing activities when air temperatures are between 75 and 95 degrees Fahrenheit. The temperature range corresponds to the period when this species is moving around and can avoid danger.

During the non-active season (October 16 through April 14), suitable blunt-nosed leopard lizard burrows identified during protocol-level and preconstruction surveys will be avoided by the Contractor. A 50-foot no-work buffer will be established around burrows to prevent impacts until the active season, when blunt-nosed leopard lizards will be able to leave the vegetation-free work area on their own accord. The no-work buffer will be established by routing the high-visibility construction fence and wildlife exclusion fence around the suitable burrow sites in a manner that allows for a connection between the burrow site and the suitable natural habitat adjacent to the footprint so that blunt-nosed leopard lizard individuals are able to leave the construction footprint during the active season. If construction activities are required during this period, the appropriate measures will be established through consultation with USFWS and CDFW.

Non-disturbance exclusion zones will be maintained by the Contractor and monitored by USFWS-approved biological monitor(s) to avoid the possibility for take of lizards, their burrows/nests, or the species habitat outside of the project footprint.

If blunt-nosed leopard lizards are observed at any time during protocol-level surveys, phased preconstruction surveys, or during construction, USFWS and CDFW will be contacted. Appropriate measures to avoid take of the species will be established through consultation with the USFWS and CDFW. The Project Biologist will submit a memorandum, on a weekly basis or at other appropriate intervals, to the Mitigation Manager to document compliance with this measure.

Fish

The common mitigation measures (BIO-MM#1 through BIO-MM#15) will directly and/or indirectly reduce impacts and effects on special-status fish species. The common mitigation measures will be implemented during the construction period, as applicable.

Birds

The common mitigation measures (BIO-MM#1 through BIO-MM#15) and project-period mitigation measures (BIO-MM#58 and BIO-MM#59) will directly and/or indirectly reduce impacts and effects on special-status bird species including those protected under the MBTA and/or listed as species of special concern (SSC) by the CDFW. These mitigation measures will be implemented during project operation as applicable. In addition, the following species-specific mitigation measures are proposed for implementation during the construction period.
BIO-MM#29. Conduct Preconstruction Surveys and Delineate Active Nest Exclusion Areas for Other Breeding Birds. Before the start of ground-disturbing activities, the Project Biologist will conduct visual preconstruction surveys where suitable habitats are present for nesting birds protected by the MBTA if construction and habitat removal activities are scheduled to occur during the bird breeding season (February 1 to August 15). In the event active bird nests are encountered during the preconstruction survey, the Project Biologist in conjunction with the Contractor will establish nest avoidance buffer zones as appropriate. The buffer distances will be consistent with the intent of the MBTA. The Project Biologist will delineate nest avoidance buffers established for ground-nesting birds in a manner that does not create predatory bird perch points in close proximity (150 feet) to the active nest site. The Project Biologist or Biological Monitor will periodically monitor active bird nests. The Project Biologist will maintain the nest avoidance buffer zone until nestlings have fledged and are no longer reliant on the nest or parental care for survival or the nest is abandoned (as determined by the Project Biologist). The Project Biologist will submit a memorandum, on a weekly basis or at other appropriate intervals, to the Mitigation Manager to document compliance with this measure.

BIO-MM#30. Conduct Preconstruction Surveys and Monitoring for Raptors. No more than 14-days before the start of ground-disturbing activities, the Project Biologist will conduct visual preconstruction surveys where suitable habitats are present for nesting raptors if construction and habitat removal activities are scheduled to occur during the bird-breeding season (February 1 to August 15). Surveys will be conducted in areas within the construction footprint and, where permissible, within 500 feet of the construction footprint for raptor species (not Fully Protected species) and 0.5 mile of the construction footprint for Fully Protected raptor species. The required survey dates will be modified based on local conditions.

If breeding raptors with active nests are found, the Project Biologist in conjunction with the Contractor will establish a 500-foot buffer around the nest to be maintained until the young have fledged from the nest and are no longer reliant on the nest or parental care for survival or the nest fails (as determined by the Project Biologist).

If fully protected raptors (e.g., white tailed-kite) with active nests are found, the Project Biologist in conjunction with the Contractor will establish a 0.5-mile buffer around the nest to be maintained until the young have fledged from the nest or the nest fails (as determined by the Project Biologist). Adjustments to the buffer(s) will require prior approval by USFWS and/or CDFW. The Project Biologist will submit a memorandum, on a weekly basis or at other appropriate intervals, to the Mitigation Manager to document compliance with this measure.

BIO-MM#31. Bird Protection. During Final Design, the Project Biologist will verify that the catenary system, masts, and other structures such as fencing are designed to be bird and raptor-safe in accordance with the applicable recommendations presented in Suggested Practices for Raptor Protection on Power Lines: The State of the Art in 2006 (APLIC 2006) and Reducing Avian Collisions with Power Lines: State of the Art in 2012 (APLIC 2012). The Project Biologist will check the final design drawings and submit a memorandum to the Mitigation Manager to document compliance with this measure.

Swainson’s Hawks

BIO-MM#32. Conduct Protocol and Preconstruction Surveys for Swainson’s Hawks. The Project Biologist will conduct preconstruction surveys for Swainson’s hawks as described in the Recommended Timing and Methodology for Swainson’s Hawk Nesting Surveys in California’s Central Valley (Swainson’s Hawk Technical Advisory Committee [SHTAC] 2000). Surveys will be performed during the nesting season (March 1 through August 1) in the year before ground-disturbing activities within the construction footprint and within a 0.5-mile buffer, where access is permitted. The preconstruction nest surveys following the Recommended Timing and
Methodology for Swainson’s Hawk Nesting Surveys in California’s Central Valley (Swainson’s Hawk Technical Advisory Committee 2000) will be phased with project build-out. The preconstruction surveys will determine the status (i.e., active, inactive) of observed nests. The Project Biologist will submit a memorandum, on a weekly basis or at other appropriate intervals, to the Mitigation Manager to document compliance with this measure.

BIO-MM#33. Swainson’s Hawk Nest Avoidance and Monitoring. If active Swainson’s hawk nests (defined as a nest used one or more times in the last 5 years) are found within 0.5-mile of the construction footprint during the nesting season (March 1 to August 1), the active nests within the 0.50-mile buffer of the construction footprint will be monitored daily by the Project Biological Monitor to assess whether the nest is occupied. If the nest is occupied, the health and status of the nest will be monitored until the young fledge or for the length of construction, whichever occurs first. The Project Biologist in conjunction with the Contractor will implement buffers restricting construction activities, following CDFW’s *Staff Report Regarding Mitigation for Impacts to Swainson’s Hawks (Buteo swainsoni) in the Central Valley of California* (CDFG 1994). Adjustments to the buffer(s) may be made in consultation with CDFW. The Project Biologist will submit a memorandum, on a weekly basis or at other appropriate intervals, to the Mitigation Manager to document compliance with this measure.

BIO-MM#34. Monitor Removal of Nest Trees for Swainson’s Hawks. Before the start of ground-disturbing activities, the Project Biological Monitor will monitor nest trees for Swainson’s hawks in the construction footprint following the guidelines and methods presented in the *Recommended Timing and Methodology for Swainson’s Hawk Nesting Surveys in California’s Central Valley* (SHTAC 2000). If an occupied Swainson’s hawk nest must be removed, the Authority will obtain take authorization through a Section 2081 Incidental Take Permit (including compensatory mitigation to offset the loss of the nest tree) from CDFW. If ground-disturbing activities or other project activities may cause nest abandonment by a Swainson’s hawk or forced fledging within the specified buffer area, monitoring of the nest site by the Project Biological Monitor will be conducted to determine if the nest is abandoned. Removal of nesting trees outside of the nesting season (generally between October 1 and February 1) does not require authorization under the Section 2081 Incidental Take Permit. The Project Biologist will submit a memorandum, on a weekly basis or at other appropriate intervals, to the Mitigation Manager to document compliance with this measure.

Burrowing Owls

BIO-MM#35. Conduct Protocol Surveys for Burrowing Owls. Before the start of ground-disturbing activities a qualified, agency-approved biologist, designated by the Project Biologist, will conduct protocol-level surveys in accordance with CDFW’s *Staff Report on Burrowing Owl Mitigation* (CDFG 2012c). The Project Biologist or designee will conduct these surveys at appropriate timeframes within suitable habitat located in the construction footprint. Results of the surveys will be used to inform BIO-MM#36. These surveys will be conducted within suitable habitat of the construction footprint and within a 150-meter (approximately 500-foot) buffer. The Project Biologist will submit a memorandum, on a weekly basis or at other appropriate intervals, to the Mitigation Manager to document compliance with this measure.

BIO-MM#36. Burrowing Owl Avoidance and Minimization. The Contractor, under the direction of the Project Biologist, will implement burrowing owl avoidance and minimization measures following CDFW’s *Staff Report on Burrowing Owl Mitigation* (CDFG 2012). During the nesting season (February 1 through August 31) occupied burrowing owl burrows will not be disturbed unless it is verified that either the birds have not begun egg-laying and incubation or the juveniles from the occupied burrows are foraging independently and are capable of independent survival (as determined by the Project Biologist).
Unless otherwise authorized by CDFW, the Project Biologist in conjunction with the Contractor will establish buffers (as an ESA) between the construction work area and occupied burrowing owl nesting sites as described in Table 3.7-19. Adjustments to the buffer(s) will require prior approval by CDFW.

Table 3.7-19
California Department of Fish and Wildlife recommended restricted activity dates and setback distances by level of disturbance for burrowing owls

<table>
<thead>
<tr>
<th>Location</th>
<th>Time of Year</th>
<th>Level of Disturbance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Low</td>
</tr>
<tr>
<td>Nesting Sites</td>
<td>April 1–Aug 15</td>
<td>200 m</td>
</tr>
<tr>
<td>Nesting Sites</td>
<td>Aug 16-Oct 15</td>
<td>200 m</td>
</tr>
<tr>
<td>Nesting Sites</td>
<td>Oct 16-March 31</td>
<td>50 m</td>
</tr>
</tbody>
</table>

Eviction of burrowing owls outside the nesting season may be permitted pending evaluation of eviction plans and receipt of formal written approval from the CDFW authorizing the eviction. If burrowing owls must be moved from the project area, the Project Biologist will undertake passive relocation measures, including monitoring, in accordance with CDFW's (CDFG 2012) guidelines.

The Project Biologist will submit a memorandum, on a weekly basis or at other appropriate intervals, to the Mitigation Manager to document compliance with this measure.

Mammals

The common mitigation measures (BIO-MM#1 through BIO-MM#15) and project mitigation measures (BIO-MM#60) will directly and/or indirectly reduce impacts and effects on special-status mammals and will be implemented during the construction period as applicable. The following species-specific mitigation measures are proposed during construction period impacts. Before construction, the Contractor will obtain written permission from CDFW to capture and relocate any non-listed mammals.

Nelson’s Antelope Squirrel, Fresno Kangaroo Rat, Tipton Kangaroo Rat, Dulzura Pocket Mouse, Tulare Grasshopper Mouse

BIO-MM#37. Conduct Surveys for Nelson’s Antelope Squirrel, Tipton Kangaroo Rat, Dulzura Pocket Mouse, and Tulare Grasshopper Mouse. Before the start of construction, the Project Biologist will conduct a habitat assessment in potentially suitable habitat within the project footprint to determine presence of special-status small mammal species burrows or their signs. During the habitat assessment a visual survey for the Nelson’s Antelope squirrel will be conducted. The habitat assessment survey and visual survey for Nelson’s Antelope squirrel will be conducted within 2 years before the start of construction or ground-disturbing activities.

Before the start of construction or ground-disturbing activities, but no more than 14 days before, pre-construction surveys for Nelson’s Antelope squirrel, which will include identification of any new burrow complexes, will be conducted within potentially suitable habitat. The pre-construction surveys will be phased with project build-out. If no observations, burrows, or signs of special-status small-mammal species are detected, no further measures will be required.
If burrows and signs of special-status small mammal species are observed, the qualified, agency-approved biologist designated by the Project Biologist will conduct protocol-level surveys in accordance with Survey Protocol for Determining Presence of San Joaquin Kangaroo Rats (USFWS 2013b) or, in the case of Nelson’s Antelope squirrel, as required through consultation with the CDFW.

The Project Biologist will submit a memorandum, on a weekly basis or at other appropriate intervals, to the Mitigation Manager to document compliance with this measure.

BIO-MM#38. Implement Avoidance and Minimization Measures for Nelson’s Antelope Squirrel, Tipton Kangaroo Rat, Dulzura Pocket Mouse, and Tulare Grasshopper Mouse.

If during the habitat assessment, pre-construction surveys, or protocol-level surveys, observations, burrows, or other signs of special-status small mammal species are detected, the Contractor, under the supervision of the Project Biologist, will establish non-disturbance exclusion zones (using wildlife exclusion fencing [e.g., a silt fence or similar material]). Non-disturbance exclusion zones will be established at least 14 days before the start of ground-disturbing activities. The non-disturbance exclusion fence with one-way exit/escape points will be placed to exclude the special-status small mammals from the construction area. The one-way exit/escape points will be established around burrows in a manner that allows special-status small-mammal species to leave the construction footprint.

Additional measures will be implemented based on the conservation measures and terms and conditions of the USFWS Biological Opinion and the CDFW Section 2081 permit. These measures may include the following:

- The Contractor will trim and clear vegetation to the ground by hand or using hand-operated equipment to discourage the presence of special-status small-mammal species in the construction footprint. The cleared vegetation will remain undisturbed by project construction equipment for 14 days to allow species to passively relocate through the one-way exit/escape points along the wildlife exclusion fencing.

- Relocation of captured individuals will occur in accordance with a USFWS- and CDFW-approved Capture and Relocation Plan. Capture and relocation of special-status small-mammal species will occur before the start of construction and will be phased with project build-out. These activities will be limited to the evenings when the nightly low temperature is forecast to exceed 50°F.

The Project Biologist will submit a memorandum, on a weekly basis or at other appropriate intervals, to the Mitigation Manager to document compliance with this measure.

BIO-MM#39. Implement Avoidance and Minimization Measures for Fresno Kangaroo Rat.

Before the start of ground-disturbing activities, a qualified agency-approved biologist, designated by the Project Biologist, will conduct a habitat assessment within the species historic range, on any parcels within the project footprint that may support the Fresno kangaroo rat (e.g., natural habitats including annual grasslands) to determine presence of kangaroo rat burrows or their signs.

If no burrows or signs of kangaroo rats are detected and kangaroo rats are confirmed to be absent from the construction footprint, the following actions will be implemented:

- The Contractor, under the supervision of Project Biologist, will install, maintain, and monitor exclusion fencing along the perimeter of the construction footprint to ensure that no take of Fresno kangaroo rat or destruction of its potential habitat outside of the project footprint occurs.
In the event that kangaroo rat individuals, their burrows, or signs of them are found within the project footprint during the habitat assessment, the Authority and FRA will prepare a Survey Plan that will be submitted to the USFWS and CDFG for review and approval.

With agency approval of the Survey Plan, small-mammal trapping will be conducted by the Contractor’s qualified agency-approved and 10(a)(1)(A) permitted biologist(s). Trapping is necessary to distinguish between the kangaroo rat species that may be present. The range of Fresno kangaroo rat in the project footprint overlaps with the more common Heerman’s kangaroo rat (Dipodomys heermanni). The trapping surveys will be conducted in accordance with the Survey Protocol for Determining Presence of San Joaquin Kangaroo Rats (USFWS 2013b) or as determined in consultation with both USFWS and CDFW and will be limited to the evenings when the nightly low temperature is forecast to exceed 50°F.

Depending on the results of the trapping surveys, one of the following will be implemented:

- In the unlikely event that Fresno kangaroo rats are confirmed within the project footprint, no construction activities will be permitted within 250 feet of the occupied areas and ESA fencing will be erected. The Authority and FRA will reinitiate consultation with the USFWS and CDFW to identify appropriate avoidance and minimization measures. The avoidance and minimization measures may include construction work windows, establishment of buffers, and dedicated biological monitoring. On completion of consultation with the USFWS and CDFW, construction may commence and the ESA may be removed.

Or,

- If Fresno kangaroo rats are not identified following the trapping surveys, construction activities may proceed as described above (installation of wildlife exclusion fencing) and implementation of avoidance and minimization measures.

The Project Biologist will submit a memorandum, on a weekly basis or at other appropriate intervals, to the Mitigation Manager to document compliance with this measure.

Special-Status Bats

BIO-MM#40. Conduct Preconstruction Surveys for Special-Status Bat Species. Before the start of ground-disturbing activities, a qualified, agency-approved biologist, designated by the Project Biologist, will conduct a visual and acoustic preconstruction survey for roosting bats. A minimum of one day and one evening will be included in the visual preconstruction survey. The Project Biologist, in coordination with the Mitigation Manager, will contact CDFW if any hibernation roosts or active nurseries are identified within or immediately adjacent to the construction footprint, as appropriate. The Project Biologist will submit a memorandum, on a weekly basis or at other appropriate intervals, to the Mitigation Manager to document compliance with this measure.

BIO-MM#41 Bat Avoidance and Relocation. During ground-disturbing activities, if active or hibernation roosts are found, the Contractor will avoid them, if feasible, for the period of activity. If avoidance of the hibernation roost is not feasible, the Project Biologist will prepare a relocation plan and coordinate the construction of an alternative bat roost with CDFW. The Contractor, under the direction of the Project Biologist, will implement the Bat Roost Relocation Plan before the commencement of construction activities.

The Contractor, under the supervision of the Biological Monitor, will remove roosts with approval from CDFW before hibernation begins (October 31), or after young are flying (July 31), using exclusion and deterrence techniques described in BIO-MM#42, below. The timeline to remove
vacated roosts is between August 1 and October 31. All efforts to avoid disturbance to maternity roosts will be made during construction activities. The Project Biologist will submit a memorandum to the Mitigation Manager, on a weekly basis or at other appropriate intervals, to document compliance with this measure.

BI O-MM#42. Bat Exclusion and Deterrence. During ground-disturbing activities, if non-breeding or non-hibernating individuals or groups of bats are found within the construction footprint, the Project Biologist will direct the Contractor to safely exclude the bats by either opening the roosting area to change the lighting and air-flow conditions or installing one-way doors or other appropriate methods specified by CDFW. The Contractor will leave the roost undisturbed by project activities for a minimum of 1 week after implementing exclusion and/or eviction activities. The Contractor will not implement exclusion measures to evict bats from established maternity roosts or occupied hibernation roosts. The Project Biologist will submit a memorandum, on a weekly basis or at other appropriate intervals, to the Mitigation Manager to document compliance with this measure.

American Badger

BI O-MM#43. Conduct Preconstruction Surveys for American Badger and Ringtail. Before the start of ground-disturbing activities, the Project Biologist will conduct preconstruction surveys for den sites within suitable habitats in the construction footprint. These surveys will be conducted no more than 30 days before the start of ground-disturbing activities and phased with project build-out. The Project Biologist will submit a memorandum, on a weekly basis or at other appropriate intervals, to the Mitigation Manager to document compliance with this measure.

BI O-MM#44. American Badger and Ringtail Avoidance. The Contractor, under the direction of the Project Biologist, will establish a 50-foot buffer around occupied dens. The Project Biologist will establish a 100-foot buffer around maternity dens through the pup-rearing season (American badger: February 15 through July 1; Ringtail: May 1 through June 15). Adjustments to the buffer(s) will require prior approval by CDFW as coordinated by the Project Biologist, under the supervision of the Mitigation Manager. The Project Biologist will submit a memorandum, on a weekly basis or at other appropriate intervals, to the Mitigation Manager to document compliance with this measure.

San Joaquin Kit Fox

BI O-MM#45. Conduct Preconstruction Surveys for San Joaquin Kit Fox. Before the start of ground-disturbing activities, the Project Biologist will conduct preconstruction surveys in accordance with USFWS' Standardized Recommendations for Protection of the San Joaquin Kit Fox prior to or during Ground Disturbance (USFWS [1999] 2011).

Preconstruction surveys for the fox will be conducted within the study area in suitable habitat areas (alkali desert scrub, annual grassland, pasture, barren, and compatible-use agricultural lands) to identify known or potential San Joaquin kit fox dens. Preconstruction surveys will be conducted by a USFWS-approved project biologist within 30 days, but no less than 14 days, before the start of construction or ground-disturbing activities and will be phased with project build-out. The Project Biologist will submit a memorandum, on a weekly basis or at other appropriate intervals, to the Mitigation Manager to document compliance with this measure.

BI O-MM#46. Minimize Impacts on San Joaquin Kit Fox. The Contractor, under the direction of the Project Biologist, will implement USFWS' Standardized Recommendations for Protection of the San Joaquin Kit Fox Prior to or During Ground Disturbance (USFWS [1999] 2011), the conservation measures and terms of the conditions of the USFWS Biological Opinion and CDFW 2081 permit to minimize ground-disturbance-related impacts on this species. The
Project Biologist will submit a memorandum, on a weekly basis or at other appropriate intervals, to the Mitigation Manager to document compliance with this measure.

Habitats of Concern

In addition to the common mitigation measures (BIO-MM#1 through BIO-MM#15) that apply to all biological resources, specific measures will be implemented to avoid and/or minimize impacts on habitat of concern, including special-status plant communities, jurisdictional waters, conservation areas, and protected trees. As applicable, project mitigation measures (BIO-MM#61 through BIO-MM#64) may also reduce the impact on habitats of concern during construction period impacts. Furthermore, in some instances mitigation measures associated with special-status species and wildlife movement corridors during the construction period and/or project operation may also directly or indirectly avoid and/or minimize impacts and effects to habitats of concern.

This section presents the mitigation measures that will be implemented to avoid and minimize impacts and effects to habitats of concern during construction period impacts and is organized into the following subheadings: special-status plant communities, jurisdictional waters, conservation areas, and protected trees.

Special-Status Plant Communities

The implementation of the applicable common mitigation measures (BIO-MM#1 through BIO-MM#15), and other construction period and project operation mitigation measures pertaining to special-status plant species, special-status plant communities, and jurisdictional waters (BIO-MM#16, BIO-MM#53 and BIO-MM#61 through BIO-MM#63) will directly or indirectly reduce impacts and effects on special-status plant communities during the construction period. In addition, the following resource-specific mitigation measure is proposed to be implemented during construction.

BIO-MM#47. Restore Temporary Riparian Impacts. During post-construction, the Contractor, under the direction of the Project Botanist, will revegetate all disturbed valley foothill riparian areas using appropriate plants and seed mixes. The Project Botanist will monitor restoration activities consistent with provisions in the RRP, as described in BIO-MM#6. The Project Botanist will submit a memorandum, on a weekly basis or at other appropriate intervals, to the Mitigation Manager documenting compliance and other reporting requirements required by the regulatory agency permits (e.g., 1600 Streambed Alteration Agreement).

Jurisdictional Waters

The implementation of the applicable common mitigation measures (BIO-MM#1 through BIO-MM#15), and project jurisdictional waters mitigation measures (BIO-MM#62 and BIO-MM#63) will also directly or indirectly reduce impacts and effects on jurisdictional waters during construction period impacts. In addition, the following resource-specific mitigation measures are proposed during construction period impacts.

BIO-MM#48. Restore Temporary Impacts on Jurisdictional Waters. During or after the completion of construction, the Contractor, under the direction of the Regulatory Specialist (Waters) and Project Botanist, will restore disturbed jurisdictional waters to original topography using stockpiled and segregated soils. In areas where gravel or geotextile fabrics have been placed to protect substrate and minimize impacts on jurisdictional waters, these materials will be removed and affected features will be restored. The Contractor, under the supervision of the Project Botanist, will conduct revegetation using appropriate plants and seed mixes. The Authority will conduct maintenance monitoring consistent with the provisions in the RRP (BIO-
MM#6). The Project Biologist will submit a memorandum, on a weekly basis or at other appropriate intervals, to the Mitigation Manager to document compliance with this measure.

BIO-MM#49. Monitor Construction Activities within Jurisdictional Waters. During ground-disturbing activities, the Regulatory Specialist (Waters) and Project Biological Monitor will conduct monitoring within and adjacent to jurisdictional waters, including monitoring of the installation of protective devices (silt fencing, sandbags, fencing, etc.), installation and/or removal of creek crossing fill, construction of access roads, vegetation removal, and other associated construction activities. The Project Biological Monitor will conduct biological monitoring to document adherence to habitat avoidance and minimization measures addressed in the project mitigation measures, including, but not limited to, the provisions outlined in BIO-MM#5, BIO-MM#7, BIO-MM#8, BIO-MM#10, BIO-MM#12 through BIO-MM#15, BIO-MM#47, and BIO-MM#48. The monitor will also document adherence to all relevant conservation measures as listed in the USFWS, CDFW, SWRCB, and USACE permits. The Regulatory Specialist (Waters) will submit a memorandum, on a weekly basis or at other appropriate intervals, to the Mitigation Manager to document compliance with this measure.

Conservation Areas

The common mitigation measures (BIO-MM#1 through BIO-MM#15) and other mitigation measures pertaining to the special-status species, habitats of concern, and wildlife movement and migration will also directly or indirectly reduce impacts and effects on conservation areas including Allensworth Ecological Reserve.

Protected Trees

The common mitigation measures (BIO-MM#1 through BIO-MM#15) and the project mitigation measure for protected trees (BIO-MM#64) will also directly and/or indirectly reduce impacts and effects on protected trees during construction period impacts. In addition, the following resource-specific mitigation measure is proposed during construction period impacts.

BIO-MM#50. Mitigation and Monitoring of Protected Trees. Before, during, and after construction, the following methods to preserve and/or mitigate for impacts on protected trees will be implemented:

- A qualified arborist, designated by the Project Botanist, will conduct surveys before removal or disturbance to evaluate the condition of all protected trees found within areas directly and indirectly affected by the Fresno to Bakersfield Section.

- The Authority will compensate for impacts and effects to protected tree resources, including removal or trimming of protected trees (naturally occurring native and landscape or ornamental trees) (see BIO-MM#64, Compensate for Impacts on Protected Trees).

- The Contractor will fence protected trees that may be indirectly affected by construction activities 5 feet from their drip lines to form ERAs.

- The Authority will prepare and implement a monitoring and maintenance program that monitors transplanted trees for re-establishment of root systems.

The Project Botanist will submit a memorandum to the Mitigation Manager to document compliance with this measure.
Wildlife Movement Corridors

In addition to the project design features, the common mitigation measures (BIO-MM#1 through BIO-MM#15) that apply to all biological resources and specific measures will be implemented to avoid and/or minimize impacts and effects on wildlife movement corridors. Furthermore, in some instances the mitigation measures associated with special-status species and habitats of concern during construction period impacts and project impacts may also directly or indirectly avoid and/or minimize impacts and effects to wildlife movement corridors. This avoidance or minimization of impacts may particularly be the case with the compensatory mitigation measures.

As discussed in Chapter 2, Alternatives, wildlife crossing opportunities will be available through a variety of engineered structures, including dedicated wildlife crossing structures, elevated structures, bridges over riparian corridors, road overcrossings and undercrossings, and drainage facilities (i.e., large-diameter [60- to 120-inch] culverts and paired 30-inch culverts). For a more detailed discussion of the crossing structures, including figures depicting the frequency and locations of these structures, refer to Figures 5-7a through 5-7c and Section 5.6 of the Fresno to Bakersfield Section: Biological Resources and Wetlands Technical Report (Authority and FRA 2012a).

This section presents the mitigation measures that will be implemented to avoid and minimize impacts and effects to wildlife movement corridors during the construction period.

BIO-MM#51. Install Flashing or Slats within Security Fencing. During construction, the Contractor, under the direction of the Project Biologist, will install permanent security fencing consistent with the final design along portions of the project that are adjacent to wildlife movement corridors and natural habitats (e.g., alkali desert scrub, annual grassland). The security fencing will be enhanced with flashing or slats for 6 inches below ground surface to 12 inches above to prevent special-status reptiles and mammals from moving into the right-of-way. The fencing with flashing or slats will be maintained during operation of the HST project. The Project Biologist will verify that the installation is consistent with the designated terms and conditions in the applicable permits. The design of the reptile and mammal-proof fencing and the exact locations where reptile and mammal-proof fencing will be installed will be determined in consultation with USFWS and CDFW.

The Project Biologist will submit a memorandum, on a yearly basis or at other appropriate intervals, to the Mitigation Manager to document compliance with this measure.

BIO-MM#52. Construction in Wildlife Movement Corridors. Before final design, the Project Biologist will conduct analysis using a GIS habitat model to identify likely wildlife travel corridors and anthropogenic barriers (such as highways, canals, and reservoirs) at the landscape level. The study will be used to further refine crossing locations within linkages in the Allensworth area (i.e., the SR 43/SR 155 and Deer Creek–Sand Ridge linkages) by locating movement opportunities, where possible, adjacent to existing natural areas. The study will not reduce the number of dedicated wildlife movement structures or reduce the openness factor below 0.41.

The study will take into account the proximity of dedicated wildlife movement structures to other wildlife crossing opportunities available through a variety of engineered structures, including elevated structures, bridges over riparian corridors, road overcrossings and undercrossings, and drainage facilities (i.e., large-diameter [60- to 120-inch] culverts and paired 30-inch culverts). The results of the study and the subsequent final design and locations will be submitted to the Mitigation Manager, the Authority, USFWS, and CDFW.

Before the start of ground-disturbing activities, the Project Biologist will submit a construction avoidance and minimization plan for wildlife movement linkages (e.g., SR 43–Garces Highway and Deer Creek–Sand Ridge linkages, Kern River linkage) to the Mitigation Manager for
concurrence. The plan will limit construction and avoid permanent fencing in wildlife movement linkages where the viaducts (e.g., elevated platforms) or bridges are included in the final design. The Contractor will minimize ground-disturbing activities within the wildlife linkages (e.g., SR 43–Garces Highway and Deer Creek–Sand Ridge linkages) during nighttime hours to the extent practicable. The Contractor will also keep nighttime illumination (e.g., for security) from spilling into the linkages or shield nighttime lighting to avoid illumination spilling into the linkages. Inspections by the Project Biologist will verify compliance with this measure. The Project Biologist will submit a memorandum, on a weekly basis or at other appropriate intervals, to the Mitigation Manager to document compliance with this measure.

3.7.7.3 Project Mitigation Measures

Special-Status Species

In addition to the common mitigation measures (BIO-MM#1 through BIO-MM#15) that apply to all biological resources, specific measures will be implemented to avoid and/or minimize project impacts and effects on special-status species. As applicable, construction period mitigation measures (BIO-MM#16 through BIO-MM#52) may also reduce the impact on special-status species during project operation. Furthermore, in some instances mitigation measures associated with habitats of concern and wildlife movement corridors during the construction period or project operation may also directly or indirectly avoid or minimize impacts and effects on special-status species.

The section presents project impact mitigation measures that will be implemented to avoid and minimize impacts and effects to special-status species and is organized by species type (e.g., reptiles, birds, mammals). The mitigation ratios presented in this section are proposed as a minimum to compensate for project impacts; final ratios will be determined in consultation with appropriate agencies.

Special-Status Plant Species

The implementation of the applicable common mitigation measures (BIO-MM#1 through BIO-MM#15) and special-status plant construction mitigation measures (BIO-MM#16 and BIO-MM#17) will directly or indirectly reduce impacts and effects on special-status plant species, as applicable. Also, the following species-specific mitigation measure for project impacts is proposed.

BIO-MM#53. Compensate for Impacts on Special-Status Plant Species. Before final design, the Authority will mitigate the impacts on special-status plants in accordance with the USFWS Biological Opinion (USFWS 2013a) by implementing the following measures:

Compensation for federally listed plant species that are observed within the project footprint and that cannot be avoided will be compensated at a 1:1 ratio based on actual acres of direct effects by the following:

a. Identification of suitable sites to receive the listed plants.
 ii. Authority-proposed permittee-responsible mitigation sites.
 iii. Other locations approved by USFWS.
b. Collection of seeds, plant materials, and top soil from the project footprint before construction impacts.

The Authority or its designee will submit a memorandum to the USFWS to document compliance with this measure.

Special-Status Wildlife Species

Invertebrates

The implementation of the applicable common mitigation measures (BIO-MM#1 through BIO-MM#15), invertebrate construction mitigation measures (BIO-MM#18 through BIO-MM#21), and other mitigation measures pertaining to the jurisdictional waters (including vernal pools) and special-status plant communities (including valley foothill riparian areas) will also directly or indirectly reduce project impacts and effects on special-status invertebrate species, as applicable. In addition, the following species-specific mitigation measures are proposed to avoid and minimize impacts and effects during project operation.

Vernal Pool Branchiopods

BIO-MM#54. Compensate for Impacts on Vernal Pool Fairy Shrimp and Vernal Pool Tadpole Shrimp. The Authority will mitigate direct and indirect impacts, including temporary and permanent, on vernal pool branchiopod habitat through compensation determined in consultation with the USFWS and USACE. Compensation for vernal pool branchiopod habitat (e.g., vernal pools, seasonal wetlands) is addressed under compensation for impacts on jurisdictional waters (BIO-MM#63). The Authority or its designee will submit a memorandum to the USFWS to document compliance with this measure.

Valley Elderberry Longhorn Beetle

BIO-MM#55. Compensate for Impacts on Valley Elderberry Longhorn Beetle. The Authority will provide compensatory mitigation for the valley elderberry longhorn beetle, including transplantation and replacement of elderberry shrubs and maintenance for replacement shrubs following the *Conservation Guidelines for the Valley Elderberry Longhorn Beetle* (USFWS 1999a). Consistent with the *Conservation Guidelines for the Valley Elderberry Longhorn Beetle* and the USFWS Biological Opinion (USFWS 2013a), the performance criteria include a minimum survival rate of at least 60% of the elderberry plants, and 60% of the associated native plants must be maintained throughout the monitoring period. If survival drops below 60%, failed plantings shall be replaced (USFWS 1999a). The Authority or its designee will submit a memorandum to the USFWS to document compliance with this measure.

Reptiles and Amphibians

The common mitigation measures (BIO-MM#1 through BIO-MM#15) and mitigation measures developed for implementation (BIO-MM#22 through BIO-MM#28) during project construction will directly and/or indirectly reduce impacts and effects on reptiles and amphibians and will be implemented during project operation as applicable. In addition, the following species-specific mitigation measures are proposed to avoid and minimize impacts and effects during project operation.

California Tiger Salamander

BIO-MM#56. Compensate for Impacts on California Tiger Salamander. If compensatory mitigation is required to offset the loss of habitat for California tiger salamander, the Authority
will determine the compensation through consultation with the USFWS. Compensatory mitigation could include one of the following:

- Purchase of credits from an agency-approved mitigation bank.
- Fee-title-acquisition of natural resource regulatory agency-approved property.
- Purchase or establishment of a conservation easement with an endowment for long-term management of the property-specific conservation values.
- In-lieu fee contribution determined through negotiation and consultation with USFWS.

The Authority or its designee will submit a memorandum to the USFWS, and CDFW to document compliance with this measure.

Blunt-Nosed Leopard Lizard, Tipton Kangaroo Rat, and Nelson’s Antelope Squirrel

BIO-MM#57. Compensate for Impacts on Blunt-Nosed Leopard Lizard, Tipton Kangaroo Rat, and Nelson’s Antelope Squirrel. The Authority will determine compensatory mitigation to offset the permanent and temporary loss of suitable habitat for the blunt-nosed leopard lizard, Tipton kangaroo rat, and Nelson’s antelope squirrel through consultation with the USFWS and/or CDFW. Compensatory mitigation could include one of the following:

- Purchase of credits from an agency-approved mitigation bank.
- Fee-title-acquisition of natural resource regulatory agency-approved property.
- Purchase or establishment of a conservation easement with an endowment for long-term management of the property-specific conservation values.
- In-lieu fee contribution determined through negotiation and consultation with USFWS.

The Authority or its designee will submit a memorandum to the USFWS, and or CDFW to document compliance with this measure.

Fish

The common mitigation measures (BIO-MM#1 through BIO-MM#15) will directly and/or indirectly reduce impacts and effects on special-status fish species. The common mitigation measures will be implemented to avoid and minimize impacts and effects during project operation, as applicable.

Birds

The common mitigation measures (BIO-MM#1 through BIO-MM#15) and construction period mitigation measures (BIO-MM#29 through BIO-MM#36) will directly and/or indirectly reduce impacts and effects on special-status bird species including those protected under the MBTA and/or listed as SSC by the CDFW. These mitigation measures will be implemented during the construction period as applicable. In addition, the following species-specific mitigation measures are proposed to avoid and minimize impacts and effects to birds during project operation.

Swainson’s Hawks

BIO-MM#58. Compensate for Loss of Swainson’s Hawk Nesting Trees. To compensate for the loss of foraging habitat in proximity to occupied Swainson’s hawk nest trees, the Authority will provide project specific compensatory mitigation that replaces nesting trees and provides natural lands for foraging.

Compensatory mitigation for Swainson’s hawk will be based on the **Staff Report Regarding Mitigation for Impacts on Swainson’s Hawks (Buteo swainsoni) in the Central Valley of California (CDFG 1994).** If project construction occurs within 0.5 mile of a documented or observed active
nest, the Authority will provide compensatory mitigation based on the amount of suitable foraging habitat within 1 mile (1:1 ratio), 1 to 5 miles (0.75:1 ratio), and 5 to 10 mile (0.5:1 ratio).

At a minimum, the habitat preserved will contain trees suitable to support nesting and or natural foraging habitat for Swainson's hawk. The Authority or its designee will submit a memorandum to the CDFW to document compliance with this measure.

Burrowing Owls

BIO-MM#59. Compensate for Loss of Burrowing Owl Active Burrows and Habitat. To compensate for permanent impacts on nesting, occupied, and satellite burrows and/or burrowing owl habitat, the Authority will provide compensatory mitigation based on CDFW's (CDFG 2012) *Staff Report on Burrowing Owl Mitigation*. The Authority or its designee will submit a memorandum to the CDFW to document compliance with this measure.

Mammals

The common mitigation measures (BIO-MM#1 through BIO-MM#15) and construction mitigation measures (BIO-MM#37 through BIO-MM#46) will directly and/or indirectly reduce impacts and effects on mammals, and will be implemented during project operation as applicable. In addition, the following species-specific mitigation measures are proposed to avoid and minimize impacts and effects to mammals during project operation.

San Joaquin Kit Fox

BIO-MM#60. Compensate for Destruction of San Joaquin Kit Fox Habitat. The Authority will mitigate the destruction of San Joaquin kit fox habitat by the purchase of suitable, approved habitat through consultation with USFWS and CDFW. For consistency with the USFWS Biological Opinion (USFWS 2013a), San Joaquin kit fox habitat will be replaced to provide additional protection and habitat in a location that is consistent with the recovery of the species. The ratio for compensatory mitigation required to replace the loss of potentially suitable habitat for the San Joaquin kit fox is based on where the habitat is located in relationship to the satellite and linkage areas, as provided in Table 3.7-20. The Authority will mitigate the impacts on San Joaquin kit fox in accordance with the USFWS Biological Opinion as presented in Table 3.7-20 of that document (USFWS 2013a) and/or CDFW 2081(b). The Authority or its designee will submit a memorandum to the USFWS and CDFW to document compliance with this measure.

<p>| Table 3.7-20 San Joaquin kit fox habitat compensation ratios |</p>
<table>
<thead>
<tr>
<th>San Joaquin kit fox Area</th>
<th>Habitat</th>
<th>Mitigation Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Southwestern Tulare County Satellite Areas</td>
<td>Natural</td>
<td>3:1</td>
</tr>
<tr>
<td></td>
<td>Developed</td>
<td>0.5:1</td>
</tr>
<tr>
<td>Metropolitan Bakersfield Satellite Area</td>
<td>Natural</td>
<td>3:1</td>
</tr>
<tr>
<td></td>
<td>Developed</td>
<td>0.1:1</td>
</tr>
<tr>
<td>Recovery Plan-Linkage</td>
<td>Natural</td>
<td>3:1</td>
</tr>
<tr>
<td></td>
<td>Developed</td>
<td>0.5:1</td>
</tr>
<tr>
<td>Other Areas (outside of Recovery Areas)</td>
<td>Natural</td>
<td>2:1</td>
</tr>
<tr>
<td></td>
<td>Developed</td>
<td>0.1:1</td>
</tr>
</tbody>
</table>
Table 3.7-20
San Joaquin kit fox habitat compensation ratios

<table>
<thead>
<tr>
<th>San Joaquin kit fox Area</th>
<th>Habitat</th>
<th>Mitigation Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
*“Natural” habitat includes: alkali desert scrub, annual grasslands, pasture, barren, and valley oak woodland habitats.
*“ Developed” habitat includes: agricultural lands (croplands, dryland grain fields, irrigated grain fields, irrigated row crops, orchards, hayfields, and vineyards) and urban areas.

Habitats of Concern

In addition to the common mitigation measures (BIO-MM#1 through BIO-MM#15) that apply to all biological resources, specific measures will be implemented to avoid and/or minimize impacts and effects on habitat of concern, including special-status plant communities, jurisdictional waters, conservation areas, and protected trees during project operation. As applicable, construction mitigation measures (BIO-MM#47 through BIO-MM#50) may also reduce the impact on habitats of concern during construction. Furthermore, in some instances mitigation measures associated with special-status species and wildlife movement corridors during the construction period and/or project operation may also directly or indirectly avoid and/or minimize impacts and effects on habitats of concern.

The section presents the mitigation measures that will be implemented to avoid, minimize, and compensate for impacts and effects to habitats of concern during project operation; this section addresses the following topics: special-status plant communities, jurisdictional waters, conservation areas, and protected trees.

Special-Status Plant Communities

The implementation of the applicable common mitigation measures (BIO-MM#1 through BIO-MM#15), and special-status plant species and special-status plant communities construction mitigation measures (BIO-MM#16, BIO-MM#17, and BIO-MM#47), and other mitigation measures pertaining to the jurisdictional waters (including vernal pools) will also directly or indirectly reduce impacts and effects on special-status plant communities during project operation, as applicable. In addition, the following species-specific mitigation measures are proposed to avoid and minimize impacts and effects to special-status plant communities during project operation.

BIO-MM#61. Compensate for Permanent Riparian Impacts. The Authority will compensate for permanent impacts on riparian habitats (i.e., valley foothill riparian), as determined in consultation with the appropriate agencies (e.g., CDFW, SWRCB), by restoring nearby areas to suitable habitat and/or by purchasing credits in a mitigation bank. The Comprehensive Mitigation and Monitoring Plan will provide the planning details. Compensation will be based on the following ratio (acres of mitigation to acres of impact), pending agency confirmation:

- Valley Foothill Riparian: 2:1.

The Authority or its designee will submit a memorandum to the CDFW and/or SWRCB to document compliance with this measure.
Jurisdictional Waters

The implementation of the applicable common mitigation measures (BIO-MM#1 through BIO-MM#15), and jurisdictional waters mitigation measures (BIO-MM#48 and BIO-MM#49) will also directly or indirectly reduce impacts and effects on jurisdictional waters during project operation. In addition, the following species-specific mitigation measure is proposed to avoid and minimize impacts and effects to jurisdictional waters during project operation.

BIO-MM#62. Prepare and Implement a Site-Specific Comprehensive Mitigation and Monitoring Plan. As part of the USFWS, USACE, SWRCB, and CDFW permit applications and before the start of ground-disturbing activities, the Authority will prepare a Comprehensive Mitigation and Monitoring Plan (CMMP) to mitigate for temporary and permanent impacts on biological resources (i.e., special-status wildlife, jurisdictional waters, and riparian areas). In the CMMP, performance standards, including percent cover of native species, survivability, tree height requirements, wildlife utilization, the acreage basis, restoration ratios, and the combination of onsite and/or offsite mitigation will be detailed; preference will be given to conducting the mitigation within the same HUC-8 or HUC-6 watershed where the impact occurs. The Authority or its designee will work with the USACE, SWRCB, and CDFW to develop appropriate avoidance, minimization, mitigation, and monitoring measures to be incorporated into the CMMP. The CMMP will outline the intent to mitigate for the lost conditions, functions, and values of impacts on jurisdictional waters and state streambeds consistent with resource agency requirements and conditions presented in Sections 404 and 401 of the CWA and Section 1600 of the CFGC. The CMMP will incorporate the following standard requirements consistent with USACE, SWRCB, and CDFW guidelines:

- Description of the project impact/site.
- Goal(s) (i.e., functions and values or conditions) of the compensatory mitigation project.
- Description of the proposed compensatory mitigation site.
- Implementation plan for the proposed compensatory mitigation site.
- Maintenance activities during the monitoring period.
- Monitoring plan for the compensatory mitigation site.
- Completion of compensatory mitigation.

Financial assurances.
- Contingency measures.

Also, the following will be included at a minimum for the implementation plan:

- Site analysis for appropriate soils and hydrology.
- Site preparation specifications based on site analysis, including but not limited to grading and weeding.
- Soil and plant material salvage from impact areas, as appropriate to the timing of impact and restoration as well as the location of restoration sites.
- Specifications for plant and seed material appropriate to the locality of the mitigation site.
- Specifications for site maintenance to establish the habitats, including but not limited to weeding and temporary irrigation.

Habitat preservation, enhancement, and/or establishment or restoration activities will be conducted on some of the compensatory (i.e., selected permittee-responsible) mitigation sites to achieve the mitigation goals. A detailed design of the mitigation habitats will be created in coordination with the permitting agencies and be described in the CMMP. It is recognized that several CMMPs will be developed consistent with the selected mitigation sites and the resources mitigated at each. The primary engineering and construction contractors will ensure, through coordination with the Project Biologist, that construction is implemented in a manner that
minimizes disturbance of such areas. Temporary fencing will be used during construction to avoid sensitive biological resources that are located adjacent to construction areas and can be avoided.

Performance standards are targets for determining the effectiveness of the mitigation and assessing the need for adaptive management (e.g., mitigation design or maintenance revisions). The performance standards are developed so that progress towards meeting final success criteria can be assessed on an annual basis; the standard for each year is progressively closer to the final criteria (e.g., vegetation cover standards may increase annually until reaching the success criteria objective in the final year of monitoring). Success criteria are formal criteria that must be met after a specific timeframe to meet regulatory requirements of the permitting agencies. Where applicable, replacement planting/seeding will be implemented if monitoring demonstrates that performance standards or success criteria are not met during a particular monitoring interval.

The performance standards will be used to determine whether the habitat improvement is trending toward sustainability (i.e., reduced human intervention) and to assess the need for adaptive management. These standards must be met for the habitat improvement to be declared successful, both during a particular monitoring year and at the end of the establishment period. These performance standards will be developed in consultation with the permitting agencies and described in the CMMP.

The final success criteria will be developed in coordination with the regulatory agencies and presented in the CMMP. Examples of success criteria, which could be included in the CMMP, and would be assessed at the end of the monitoring period (assumed to be 5 years or as directed by agencies), include:

- Percent survival of planted trees (65–85%, depending on species and habitat).
- Percent absolute cover of highly invasive species, as defined by the California Invasive Plant Council (<5%).
- Percent total absolute cover of plant species (50-80%, depending on habitat type).
- Designed wetlands will meet U.S. Army Corps of Engineers criteria for hydrophytic vegetation, hydric soils, and hydrology as defined in the “Corps of Engineers wetland delineation manual” (Environmental Laboratory 1987).
- Designed vernal pools and seasonal wetlands will meet inundation and seasonal drying requirements as specified in the design and indicated by agencies.
- Species composition and community diversity, relative to reference sites, and/or as described in the guidelines issued by permitting agencies (e.g., USFWS conservation guidelines for valley elderberry longhorn beetle).

Performance standards and success criteria will be provided for each of the years of monitoring and will be specific to habitat types at each permittee-responsible mitigation site. The monitoring schedule will be detailed in the site-specific CMMPs. To be deemed successful, the site will be required to meet the performance standards established for the year in which monitoring is being conducted (e.g., monitoring conducted at intervals with increasing performance requirements). However, if performance standards are not met in specific years, remedial measures, such as regrading, adjustment to modify the hydrological regime, and/or replacement planting or seeding, must be implemented and that year’s monitoring must be repeated the following year until the performance standards are met. The success criteria specified must be reached without human intervention (e.g., irrigation, replacement plantings) aside from maintenance practices described in the site-specific CMMPs for maintenance during the establishment period.
The Authority or its designee will oversee the implementation of all CMMP elements and monitor consistent with the prescribed maintenance and performance monitoring requirements.

The Authority or its designee will prepare annual monitoring reports for 5 years (or less if success criteria are met as described earlier) and/or other documentation prescribed in the resource agency permits. The Authority or its designee will submit a memorandum to the regulatory agencies to document compliance with this measure.

BIO-MM#63. Compensate for Permanent and Temporary Impacts on Jurisdictional Waters. The Authority will mitigate permanent and temporary wetland impacts through compensation determined in consultation with the USACE, SWRCB, USFWS, and CDFW, in order to be consistent with the CMMP (BIO-MM#62). Regulatory compliance for jurisdictional waters includes relevant terms and conditions from the USACE 404 Permit, SWRCB 401 Permit, and CDFW 1600 Streambed Alteration Agreement.

Compensation shall include jurisdictional waters restoration, establishment, enhancement, or preservation through one or more of the following methods:

- Purchase of credits from an agency-approved mitigation bank.
- Fee-title-acquisition of natural resource regulatory agency-approved property.
- Permittee-responsible mitigation through the establishment, re-establishment, restoration, enhancement, or preservation of jurisdictional waters and the establishment of a conservation easement or other permanent site protection method, along with financial assurance for long-term management of the property-specific conservation values.
- In lieu fee contribution determined through negotiation and consultation with the various natural resource regulatory agencies.

The following ratios are proposed as a minimum for compensation for permanent impacts; final ratios will be determined in consultation with the appropriate agencies:

- Vernal pools: 2:1.
- Seasonal wetlands: between 1.1:1 and 1.5:1 based on impact type and function and values lost.
 - 1:1 offsite for permanent impacts.
 - 1:1 onsite and 0.1:1 to 0.5:1 offsite for temporary impacts.

The Authority will mitigate impacts on jurisdictional waters by replacing, creating, restoring, enhancing or preserving aquatic resource at the ratios presented above or other ratios, as determined in consultation with the appropriate agencies, which compensates for functions and values lost. The Authority will consider modifying the vernal pool mitigation ratios in the final permits based on site-specific conditions and the specific life history requirements of vernal pool branchiopods, California tiger salamander, and western spadefoot toad.

Where an HST alternative affects an existing conservation area (e.g., Allensworth ER), the Authority will modify the mitigation ratio to meet the vernal pool mitigation requirement. Either the affected portion of the conservation area will be relocated or compensation will be provided to the holder of Allensworth ER in accordance with the Uniform Relocation and Real Property Policy Act of 1970, as amended.

Through the CMMP reporting program and the applicable terms and conditions from the USACE 404 Permit, SWRCB 401 Permit, and the CDFW 1600 Streambed Alteration Agreement, the Authority or its designee will document compliance and submit it to the regulatory agencies.
Conservation Areas

The common mitigation measures (BIO-MM#1 through BIO-MM#15) and other mitigation measures pertaining to the special-status species, habitats of concern, and wildlife movement corridors will also directly or indirectly reduce impacts and effects on conservation areas (e.g., Allensworth ER).

Protected Trees

The common mitigation measures (BIO-MM#1 through BIO-MM#15) and construction mitigation measure for protected trees (BIO-MM#50) will also directly and/or indirectly reduce impacts and effects on protected trees during project operation. In addition, the following species-specific mitigation measure is proposed to avoid and minimize impacts and effects to protected trees during project operation.

BIO-MM#64. Compensate for Impacts on Protected Trees. The Authority will compensate for impacts, including removal or trimming of naturally occurring native protected trees and landscape or ornamental protected trees, in accordance with the local regulatory body (city or county government). The local regulations and laws allow for a number of potential mitigation opportunities. The Authority will provide mitigation commensurate with the regulations and laws in that jurisdiction such that the resulting impact on protected trees is less than significant and may include, but is not limited to, the following, depending on the local jurisdiction:

- Transplant directly affected protected trees that are judged by an arborist to be in good condition to a suitable site outside the zone of impact.
- Replace directly affected protected trees at an onsite or offsite location, based on the number of protected trees removed, at a ratio not to exceed 3:1 for native trees or 1:1 for landscape or ornamental trees.
- Contribute to a tree-planting fund.

The Authority or its designee will submit a memorandum to the local regulatory body to document compliance with this measure.

Wildlife Movement Corridors

As applicable, construction period mitigation measures (BIO-MM#51 and BIO-MM#52) and common mitigation measures (BIO-MM#1 through BIO-MM#15) that apply to all biological resources may also reduce the impact on wildlife movement corridors during project operation.

Furthermore, mitigation measures associated with special-status species and habitats of concern during the construction period and/or project operation may also directly or indirectly avoid and/or minimize impacts and effects on wildlife movement corridors. This avoidance or minimization of impacts may specifically be the case for the compensatory mitigation, which will focus on preservation of natural habitats in wildlife movement linkages and corridors.

As discussed in Chapter 2, wildlife crossing opportunities would be available through a variety of engineered structures, including dedicated wildlife crossing structures, viaducts, bridges over riparian corridors, road overcrossings and undercrossings, and drainage facilities (i.e., large-diameter [60–120 inches] culverts and paired 30-inch culverts). For a more detailed discussion of the crossing structures, including figures depicting the frequency and locations of these structures, see Figures 5-7a through 5-7c and Section 5.6 of the Fresno to Bakersfield Section: Biological Resources and Wetlands Technical Report (Authority and FRA 2012a).
Offsite Habitat Restoration, Enhancement, and Preservation

BIO-MM#65: Offsite Habitat Restoration, Enhancement, and Preservation. Before site preparation at a mitigation site, the Authority will consider the offsite habitat restoration, enhancement, and preservation program and identify short-term temporary and/or long-term permanent effects on the natural landscape. A determination will be made on any effects from the physical alteration of the site to onsite biological resources, including plant communities, land cover types, and the distribution of special-status plant and wildlife.

Appropriate seasonal restrictions (e.g., breeding season) on activities that result in physical alteration of the site may be applicable if suitable habitats for special-status species and sensitive habitats exist onsite. Activities resulting in the physical alteration of the site include grading/modifications to onsite topography, stockpiling, storage of equipment, installation of temporary irrigation, removal of invasive species, and alterations to drainage features. In general, the long-term improvements to habitat functions and values will offset temporary effects during restoration, enhancement, and preservation activities.

The offsite habitat restoration, enhancement, and preservation program will be designed, implemented, and monitored in ways that are consistent with the terms and conditions of the USACE Section 404 Permit, CDFW 1600 Streambed Alteration Agreement, and CESA and federal ESA as they apply to their jurisdiction and resources onsite. Potential effects on site-specific hydrology and the downstream resources will be evaluated as a result of implementation of the restoration-related activity. Site-specific BMPs and a Storm Water Pollution Prevention Plan (SWPPP) will be implemented as appropriate.

The Authority will report on compliance with the permitting requirements. The Authority or its designee will be responsible for the monitoring and tracking of the program, will prepare a memorandum of compliance, and will submit it to the appropriate regulatory agency.

3.7.7.4 Compensatory Mitigation Options

In response to the comments from the natural resource agencies (e.g., EPA) and public comments, the Authority and FRA are providing additional information regarding the compensatory mitigation options to offset unavoidable and significant impacts on biological resources and wetlands in the Fresno to Bakersfield Section. In accordance with agency guidance, the Authority and FRA will propose mitigation with the intent of maximizing available mitigation and conservation credits and opportunities for mitigation; providing for regional variations in resource conditions, functions, and values; and applying equivalent standards to each type of compensatory mitigation.

Current mitigation options include mitigation/conservation banks, in-lieu fee programs, and permittee-responsible mitigation. The compensatory mitigation options under consideration will be evaluated on the basis of their availability (i.e., mitigation/conservation bank credits and in-lieu fee programs), likelihood for ecological success and sustainability, their location relative to the impact site, their significance within the local and/or regional landscape of the Central Valley, and their anticipated costs. Final mitigation requirements will be determined through consultation with state and federal resource agencies.

The combination of mitigation banks and permittee-responsible mitigation options will be suitable to fully mitigate potential impacts on jurisdictional waters, special-status plant communities, and special-status plant and wildlife species.
Mitigation Bank Credits

Three mitigation banks are currently under consideration to mitigate for project impacts: the Sand Creek Conservation Bank, the Deadman Creek Conservation Bank, and the Kreyenhagen Mitigation Bank (Table 3.7-21). These banks only provide USFWS-approved mitigation/conservation credits; therefore, depending on the final mitigation requirements as determined through consultation with state and federal resource agencies, the use of these mitigation banks may require the pursuit of additional CDFW-approved mitigation options to fully mitigate potential impacts on dual-listed (USFWS and CDFW) species.

Table 3.7-21
Conservation Bank Credit Options Identified to Date

<table>
<thead>
<tr>
<th>MITIGATION SITE</th>
<th>Agency Approval Status</th>
<th>Available Mitigation for Special-Status Wildlife Species (acres) (Listing Status: federal/ state)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand Creek Conservation Bank (497 ac)</td>
<td></td>
<td>San Joaquin kit fox (FE/ST) 358</td>
</tr>
<tr>
<td>Deadman Creek Conservation Bank (710 ac)</td>
<td></td>
<td>Vernal pool fairy shrimp (FT/--) 40</td>
</tr>
<tr>
<td>Kreyenhagen Mitigation Bank (1,600 ac)</td>
<td></td>
<td>Western burrowing owl (-/CSC) 266</td>
</tr>
</tbody>
</table>

* Acreage of potential burrowing owl/Swainson’s hawk habitat present; actual available acreage to be determined through consultation with CDFW under CEQA.
* Service area may be negotiable with CDFW/USFWS.
* USFWS would consider extending a variance at the Sand Creek Conservation Bank to allow mitigation credits for California tiger salamander impacts outside of the bank’s established service area.

Permittee-Responsible Mitigation

Potential permittee-responsible compensatory mitigation may occur at a number of different sites. Based on the Watershed Approach and the project impacts, compensatory mitigation should occur within close proximity to the project impacts, be adjacent to existing protected lands, support jurisdictional waters or special-status plant or wildlife species, and be located in wildlife movement linkages or corridors.

Currently, 12 potential permittee-responsible mitigation sites are under consideration for restoration, enhancement, establishment, or preservation of suitable habitat for special-status plant and wildlife species habitat, special-status plant communities, and jurisdictional waters.

The title reports for these 12 properties have been reviewed and found to be free of encumbrances. These properties include lands adjacent to or in the immediate vicinity of protected lands like the Kern National Wildlife Refuge, Allensworth Ecological Reserve, Kern...
Water Bank Authority Conservation Bank, Semitropic Ecological Reserve, and Center for Natural Lands Management lands. Some of the properties overlap areas designated as vernal pool fairy shrimp critical habitat, vernal pool tadpole shrimp critical habitat, and California tiger salamander critical habitat and encompass portions of major watershed features such as Cross Creek, Kern River, and Kings River or areas designated as wildlife movement corridors. These properties have been or are in the process of being surveyed for the presence of jurisdictional waters (wetland delineation and CRAM assessments) and special-status species (presence surveys) to determine the baseline extent, condition, and suitability for compensatory mitigation activities (preservation, enhancement, restoration, or establishment).

The following baseline information has been collected for each potential mitigation site, if available:

- General geographic description, including adjacent public/natural lands.
- Existing environmental stressors.
- Wetland delineation and CRAM conditional assessment results (see Appendix A, Evaluation of Wetland Condition Using the California Rapid Assessment Method, of the Watershed Evaluation Report (Authority and FRA 2013d) (provided in Appendix 3.7-C).
- Potential wildlife and botanical resources present.
- Preservation, restoration, enhancement, and establishment opportunities.

These permittee-responsible compensatory mitigation options are described below in Table 3.7-22.

Potential Compensatory Mitigation Sites

In addition to the 12 identified potential permittee-responsible compensatory mitigation sites, a thirteenth permittee-responsible mitigation site has been identified as part of the environmental review and permitting of the Merced to Fresno Section of the HST System and is described in the Merced to Fresno: Addendum 2013-2 to the Final Merced to Fresno Section Project EIR/EIS (Authority and FRA 2013f). This permittee-responsible mitigation site, Lazy K, has mitigation and conservation acreage in excess of that required to fully mitigate potential impacts on jurisdictional waters, special-status plant communities, and special-status plant and wildlife species for Permitting Phase 1 of the Merced to Fresno Section (Authority and FRA 2014). To advance the mitigation planning effort, this overage may be applied toward the Fresno to Bakersfield Section to mitigate potential impacts on jurisdictional waters, special-status plant species, vernal pool tadpole shrimp, vernal pool fairy shrimp, valley elderberry longhorn beetle, California tiger salamander, Swainson’s hawk, and San Joaquin kit fox.

Depending on project need and availability, additional permittee-responsible compensatory mitigation sites may be identified and utilized to satisfy compensatory mitigation obligations. Future sites are likely to have similar resources, ecological communities, jurisdictional waters, and special-status species as those described in more detail below.

These sites may include, but are not limited to, locations such as the Sanger parcels in Fresno County, near the intersection E. Annadale and S. Riverbend Avenue east of Sanger, California. The Sanger parcels, composed of several parcels totaling approximately 240 acres, have been recently identified. However, field surveys have not been conducted and a prospective conceptual mitigation plan has not been developed to date. Based on an aerial photograph and communications with a representative of the owner, the properties contain agricultural land uses, riparian and open-water habitats, and portions of both the Kings River and Moody Slough (Ray, personal communication, 2014). The Sanger parcels are currently used for mining and concrete operations (which include processing, preparation of concrete ready-mix, and associated yards).
Compensatory mitigation may include creation, restoration, and preservation of aquatic communities, riparian areas, and adjacent uplands. Additional environmental review, including CEQA documentation and regulatory permit applications, will be completed as necessary if refined site design or biological surveys are required under BIO-MM#62: Prepare and Implement a Site-Specific Comprehensive Mitigation and Monitoring Plan and BIO-MM#65: Offsite Habitat Restoration, Enhancement, and Preservation and reveal new environmental impacts or substantial increases in known impacts.

A summary of the location, size, biological resources, and activities that may be conducted on the 13 potential permittee-responsible sites is provide below.

Lazy K

The Lazy K Mitigation Site consists of a 1,005-acre subset of the Lazy K Ranch, a 1,557.75-acre ranch in Madera and Merced counties. The Lazy K Mitigation Site supports high-density vernal pools and swales, with mima mound topography and upland annual grasslands; the site is used primarily for livestock grazing. A subset of the Lazy K Mitigation Site, the Merced to Fresno PP1 Mitigation Area has been set aside for use as compensatory mitigation. The Merced to Fresno PP1 Mitigation Area is 529.7 acres, which includes a Wetland Restoration Area, Preservation Area, and Riparian Restoration Area as well as temporary use areas, staging areas, and inoculum collection areas throughout the site. The remaining 475 acres (outside of the Merced to Fresno PP1 Mitigation) may be used, with agency concurrence, to mitigate for impacts associated with the Fresno to Bakersfield Section (Authority and FRA 2014).

The Lazy K Mitigation Site includes opportunities for vernal pool and riparian restoration and preservation within the Chowchilla River watershed and habitat restoration and preservation for vernal pool fairy shrimp, vernal pool tadpole shrimp, midvalley fairy shrimp (*Branchinecta mesovallensis*), California tiger salamander, Swainson’s hawk, San Joaquin kit fox, spiny-sepaled button-celery (*Eryngium spinosepalum*), and succulent owl’s-clover.
<table>
<thead>
<tr>
<th>Resource Type</th>
<th>Lazy K (475 acres)</th>
<th>Buena Vista Dairy (715 acres)</th>
<th>Yang Properties (316.4 acres)</th>
<th>Staffel Family Trust Property (61.2 acres)</th>
<th>Davis Property (158 acres)</th>
<th>Valdez Properties (120 acres)</th>
<th>Burr Ranch (37.8 acres)</th>
<th>Fagundes Properties (405 acres)</th>
<th>Peck Island Properties (414 acres)</th>
<th>Panoroma Vista Preserve (827 acres)</th>
<th>Old River Dairy (760 acres)</th>
<th>River Ranch (362 acres)</th>
<th>Smith Offering (5,422 acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetlands</td>
<td></td>
</tr>
<tr>
<td>Vernal pool (reestablishment)</td>
<td>2.86 ac</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>8.7 ac</td>
<td>N/A</td>
<td>N/A</td>
<td>161-295 ac</td>
<td>N/A</td>
<td>TBD</td>
</tr>
<tr>
<td>Vernal pool (preservation)</td>
<td>N/A</td>
<td>83.7</td>
<td>97.7 ac</td>
<td>2.8 ac</td>
<td>28.3 ac</td>
<td>0.2 ac</td>
<td>N/A</td>
<td>7.6 ac</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>TBD</td>
</tr>
<tr>
<td>Seasonal wetland (reestablishment)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>4 ac</td>
<td>N/A</td>
<td>N/A</td>
<td>10 ac</td>
<td>TBD</td>
</tr>
<tr>
<td>Seasonal wetland (preservation)</td>
<td>N/A</td>
<td>33.6 ac</td>
<td>N/A</td>
<td>0.1 ac</td>
<td>4.1 ac</td>
<td>0.8 ac</td>
<td>N/A</td>
<td>2.7 ac</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>TBD</td>
</tr>
<tr>
<td>Riverine (reestablishment)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>2.3 ac</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>4.3 ac</td>
<td>TBD</td>
</tr>
<tr>
<td>Riverine (preservation)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>14.7 ac</td>
<td>31.7 ac</td>
<td>17.4 ac</td>
<td>N/A</td>
<td>28.8 ac</td>
<td>TBD</td>
</tr>
<tr>
<td>Uplands</td>
<td></td>
</tr>
<tr>
<td>Oak woodland (reestablishment)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>83.3 ac</td>
<td>N/A</td>
<td>N/A</td>
<td>182.4 ac</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>Oak woodland (preservation)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>35 ac</td>
<td>N/A</td>
<td>N/A</td>
<td>3.1 ac</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>Riparian (establishment)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>157 ac</td>
<td>45.5 ac</td>
<td>N/A</td>
<td>87.9 ac</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>Riparian (restoration/enhancement)</td>
<td>TBD</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>5.6 ac</td>
<td>1.5 ac</td>
<td>118.2 ac</td>
<td>N/A</td>
<td>34.9 ac</td>
<td>TBD</td>
</tr>
<tr>
<td>Riparian (preservation)</td>
<td>TBD</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>TBD</td>
<td>100 ac</td>
<td>33.5 ac</td>
<td>N/A</td>
<td>9.3 ac</td>
<td>TBD</td>
</tr>
<tr>
<td>Wildlife</td>
<td></td>
</tr>
<tr>
<td>Vernal pool fairy shrimp</td>
<td>14.0 ac</td>
<td>N/A</td>
<td>97.7 ac</td>
<td>2.9 ac</td>
<td>32.4 ac</td>
<td>1.0 ac</td>
<td>N/A</td>
<td>10.3 ac</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Vernal pool tadpole shrimp</td>
<td>0.3 ac</td>
<td>N/A</td>
<td>97.7 ac</td>
<td>2.9 ac</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>10.3 ac</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>California tiger salamander</td>
<td>5.93</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>10.3 ac</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>(aquatic)</td>
<td></td>
</tr>
<tr>
<td>California tiger salamander</td>
<td>335.3</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>365.7 ac</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>(upland)</td>
<td></td>
</tr>
<tr>
<td>Blunt-nosed leopard lizard</td>
<td>N/A</td>
<td>715 ac</td>
<td>316.4 ac</td>
<td>61.2 ac</td>
<td>158 ac</td>
<td>120 ac</td>
<td>N/A</td>
<td>827 ac</td>
<td>760 ac</td>
<td>N/A</td>
<td>N/A</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>Swainson’s hawk</td>
<td>318.9 ac</td>
<td>715 ac</td>
<td>316.4 ac</td>
<td>61.2 ac</td>
<td>158 ac</td>
<td>120 ac</td>
<td>37.8 ac</td>
<td>405 ac</td>
<td>414 ac</td>
<td>N/A</td>
<td>760 ac</td>
<td>317 ac</td>
<td>TBD</td>
</tr>
<tr>
<td>Western burrowing owl</td>
<td>TBD</td>
<td>715 ac</td>
<td>316.4 ac</td>
<td>61.2 ac</td>
<td>158 ac</td>
<td>120 ac</td>
<td>37.8 ac</td>
<td>384.7 ac</td>
<td>N/A</td>
<td>827 ac</td>
<td>760 ac</td>
<td>N/A</td>
<td>TBD</td>
</tr>
<tr>
<td>Nelson’s antelope squirrel</td>
<td>N/A</td>
<td>715 ac</td>
<td>316.4 ac</td>
<td>61.2 ac</td>
<td>158 ac</td>
<td>120 ac</td>
<td>N/A</td>
<td>N/A</td>
<td>1,044 ac</td>
<td>N/A</td>
<td>760 ac</td>
<td>N/A</td>
<td>TBD</td>
</tr>
<tr>
<td>Tikton kangaroo rat</td>
<td>N/A</td>
<td>715 ac</td>
<td>316.4 ac</td>
<td>61.2 ac</td>
<td>158 ac</td>
<td>120 ac</td>
<td>N/A</td>
<td>N/A</td>
<td>1,044 ac</td>
<td>N/A</td>
<td>760 ac</td>
<td>N/A</td>
<td>TBD</td>
</tr>
</tbody>
</table>
Table 3.7-22
Overview of Potential Mitigation Property Resources: Potential Acreage Available

<table>
<thead>
<tr>
<th>Resource Type</th>
<th>Lazy K (475 acres)</th>
<th>Buena Vista Dairy (715 acres)</th>
<th>Yang Properties (316.4 acres)</th>
<th>Staffel Family Trust Property (61.2 acres)</th>
<th>Davis Property (158 acres)</th>
<th>Valadez Property (120 acres)</th>
<th>Burr Ranch (37.8 acres)</th>
<th>Fagundes Properties (405 acres)</th>
<th>Peck Island Properties (414 acres)</th>
<th>Panorama Vista Preserve (827 acres)</th>
<th>Old River Dairy (760 acres)</th>
<th>River Ranch (362 acres)</th>
<th>Smith Offering (5,422 acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>San Joaquin kit fox</td>
<td>246 ac</td>
<td>715 ac</td>
<td>316.4 ac</td>
<td>61.2 ac</td>
<td>158 ac</td>
<td>120 ac</td>
<td>N/A</td>
<td>384.7 ac</td>
<td>N/A</td>
<td>1,044 ac</td>
<td>760 ac</td>
<td>N/A</td>
<td>TBD</td>
</tr>
</tbody>
</table>

ac = acre(s)
lf = linear feet
N/A = not applicable (not present)
TBD = to be determined
Burr Ranch

A single potential permittee-responsible mitigation property in Kings County (i.e., the Burr Ranch property), totaling 37.8 acres, where a pair of Swainson’s hawks has been confirmed nesting onsite, has been identified for enhancement and preservation. Further negotiation would be required with CDFW to determine whether this property would be suitable habitat as mitigation for project impacts on Swainson’s hawk.

Buena Vista Dairy and Old River Dairy

Two potential permittee-responsible mitigation properties in Kern County, Buena Vista Dairy and Old River Dairy, totaling approximately 1,475 acres, have been identified for a combination of restoration, enhancement, and preservation. The preservation component of these adjoining parcels features an extensive network of predominantly undisturbed vernal pools (83.7 acres), depressional wetlands (33.6 acres), and support-intact, natural terrestrial communities, including alkali desert scrub and annual grassland. The restoration component of the Old River Dairy, which is currently under irrigated hayfield (alfalfa) agricultural production, consists of reestablishing the natural communities once present onsite, including alkali desert scrub, annual grassland, and a network of vernal pools and depressional wetlands, as identified through a review of historical aerial imagery and surrounding natural lands.

These properties are in the general vicinity of the Kern Water Bank with limited impediments to terrestrial or hydrologic connectivity. Together with portions of the Kern Water Bank, these properties and the surrounding natural lands provide approximately 5,000 acres of contiguous open space east of Interstate 5 suitable for special-status wildlife species. The natural vegetation communities present on these properties provide relatively undisturbed, high-quality habitat suitable for blunt-nosed leopard lizard, Swainson’s hawk, western burrowing owl, Nelson’s antelope squirrel, Tipton kangaroo rat, and San Joaquin kit fox. All of these species have been reported in the vicinity and have the potential to be present on the properties. Agency coordination with CDFW and USFWS and presence surveys in 2012 have confirmed western burrowing owl and Tipton kangaroo rat on these properties. If restoration were successfully undertaken to restore the disturbed portions of these parcels to historical conditions, the development of natural vegetation communities could re-establish an estimated 161 to 295 acres of alkali rain pools and approximately 750 acres of wildlife habitat suitable for blunt-nosed leopard lizard, Swainson’s hawk, western burrowing owl, Nelson’s antelope squirrel, Tipton kangaroo rat, and San Joaquin kit fox.

Yang and Staffel Properties

Two potential permittee-responsible mitigation properties in the vicinity of the Tulare/Kern County border (i.e., the Yang and Staffel properties), totaling approximately 377 acres, have been identified for primarily preservation, with limited opportunities for wetlands and wildlife habitat enhancement and restoration (re-establishment). The parcels feature extensive predominantly undisturbed vernal pools (100.5 acres) and support-intact, natural terrestrial communities, including alkali desert scrub and annual grassland. These properties are in the general vicinity of the Allensworth Ecological Reserve and have limited impediments to terrestrial or hydrologic connectivity. Together with the Allensworth Ecological Reserve, these and the surrounding natural lands provide approximately 1,800 acres of contiguous open space west of State Route 43 suitable for special-status plant and wildlife species.

The natural vegetation communities present on these properties provide relatively undisturbed, high-quality habitat suitable for vernal pool fairy shrimp, blunt-nosed leopard lizard, Swainson’s hawk, western burrowing owl, Nelson’s antelope squirrel, Tipton kangaroo rat, and San Joaquin kit fox. All of these species have been reported in the vicinity and have the potential to be
present on these properties. Agency coordination with CDFW and USFWS and protocol-level surveys in 2010 through 2012 have confirmed vernal pool fairy shrimp, blunt-nosed leopard lizard, Swainson’s hawk, western burrowing owl, Tipton kangaroo rat, and San Joaquin kit fox on these properties.

Davis and Valdez Properties

Two potential permittee-responsible mitigation properties in Kern County (i.e., the Davis and Valdez properties), totaling approximately 278 acres, have been identified for primarily preservation, with limited opportunities for wetlands and wildlife habitat rehabilitation. The parcels feature predominantly undisturbed vernal pools and swales (28.5 acres), seasonal depressional wetlands (4.9 acres), and support-intact, natural terrestrial communities, including alkali desert scrub and annual grassland. These properties are in the general vicinity of the Semitropic Ecological Reserve and Kern National Wildlife Refuge with limited impediments to terrestrial or hydrologic connectivity. Together with the Semitropic Ecological Reserve and Kern National Wildlife Refuge, these and the surrounding natural lands provide more than 50,000 acres of contiguous open space east of Interstate 5 suitable for special-status plant and wildlife species. Since the Valadez property was first identified and surveys performed, the parcel has changed ownership and negotiations with the new owner have been unsuccessful; this change in ownership may disqualify the Valadez property from further inclusion in the mitigation planning process.

The natural vegetation communities observed on the property provide relatively undisturbed, high-quality habitat suitable for blunt-nosed leopard lizard, Swainson’s hawk, western burrowing owl, Nelson’s antelope squirrel, Tipton kangaroo rat, and San Joaquin kit fox. All of these species have been reported in the vicinity and have the potential to be present on these properties. Agency coordination with CDFW, USFWS, and the Kern National Wildlife Refuge and protocol-level surveys in 2012 have confirmed the presence of Swainson’s hawk, western burrowing owl, Tipton kangaroo rat, and San Joaquin kit fox on these properties.

Fagundes Property

A permittee-responsible mitigation property in Kings County (i.e., the Fagundes property), totaling approximately 405 acres, has been identified for a combination of preservation, restoration, and establishment. The preservation component of this property features an extensive network of predominantly undisturbed vernal pools (7.6 acres), seasonal wetlands (2.7 acres), jurisdictional waters (creek) (14.7 acres), and support-intact, natural terrestrial communities, including annual grasslands and riparian habitat. This property lies within land mapped as critical habitat for the federally listed vernal pool fairy shrimp, vernal pool tadpole shrimp, and California tiger salamander and has limited impediments to terrestrial or hydrological connectivity. Together with USFWS-designated critical habitat in the region, these and surrounding natural lands provide more than 1,350 acres of contiguous open space in the Cross Creek watershed for special-status plant and wildlife species.

The aquatic features and natural vegetation communities present on the property provide relatively undisturbed, high-quality habitat suitable for vernal pool fairy shrimp, vernal pool tadpole shrimp, California tiger salamander, Swainson’s hawk, western burrowing owl, and San Joaquin kit fox. All of these species have been reported in the vicinity and have the potential to be present on the property. Agency coordination with CDFW and USFWS and reconnaissance-level surveys in 2012 through 2013 have confirmed Swainson’s hawk foraging and nesting habitat on this property. If restoration and establishment were successfully undertaken to restore and create vernal pools, the property could support an additional estimated 8.7 acres of vernal pools suitable for California tiger salamander, vernal pool tadpole shrimp, and vernal pool fairy shrimp.
River Ranch and Peck Island Properties

Two potential permittee-responsible mitigation properties in Kings and Fresno counties (the River Ranch and Peck Island properties), totaling approximately 776 acres, have been identified for restoration, enhancement, establishment, and preservation. The parcels feature a combination of riverine habitat in the Kings River watershed within intact to disturbed riparian habitats bounded by active agricultural land and support-intact, terrestrial communities, including oak woodland and associated riparian zones. The restoration components of these properties include establishing and re-establishing side channels and seasonal wetlands and enhancing and rehabilitating existing riverine and riparian habitats.

Together with up and downstream portions of the Kings River alluvial fan, these properties and the surrounding natural lands provide approximately 1,930 acres of contiguous open space in the Kings River watershed suitable for special-status wildlife species. The riparian corridors throughout these properties support elderberry shrubs and the valley elderberry longhorn beetle and provide suitable nesting and foraging habitat for Swainson’s hawk. Valley elderberry longhorn beetle and its elderberry shrub host plant have been reported at select locations onsite, and have the potential to be more widespread than originally reported.

Panorama Vista Preserve

The Panorama Vista Preserve in Kern County, totaling approximately 827 acres, is currently undergoing phased restoration. Phases 1 and 2 are under way or nearing completion, and Phases 3, 4, and 5 are still open to design input and funding opportunities. As part of the permittee-responsible mitigation analysis, the Authority is currently investigating opportunities to fund and implement restoration efforts associated with Phases 3 and 4 of the project, which would involve securing conservation easements on unprotected parcels and funding and implementing restoration, enhancement, establishment, and preservation of the preserve’s natural and disturbed lands, which are composed of non-native annual grasslands, willow and saltbrush scrub, and cottonwood riparian forest along the Kern River.

Together with portions of the natural land within the Kern River Oilfield and the Sierra Foothills, the Panorama Vista Preserve properties and the surrounding natural lands provide approximately 9,000 acres of contiguous open space between Bakersfield and the Sierra Foothills suitable for riverine restoration, wetland establishment, and habitat preservation for special-status wildlife species. The natural vegetation communities present onsite provide habitat suitable for valley elderberry longhorn beetle, blunt-nosed leopard lizard, western burrowing owl, Nelson’s antelope squirrel, Tipton kangaroo rat, and San Joaquin kit fox. These species have been reported in the vicinity and have the potential to be present on the property. The Authority’s involvement in any mitigation opportunity at the Panorama Vista Preserve is contingent on the Preserve’s funding and implementation schedules for their Phases 3, 4, and 5, which is less likely to occur in the near term. The location of Panorama Vista Preserve in the south San Joaquin Valley suggests that the contribution of funding for implementing restoration efforts and securing conservation easements may be more appropriate later in the HST’s mitigation planning effort, timed to coincide with Construction Package 4.

Smith Offering

One potential permittee-responsible mitigation property in Tulare County (i.e., the Smith Offering) consists of a variety of large, non-contiguous parcels in the immediate vicinity of the Bureau of Land Management’s Atwell Island Land Retirement Demonstration Project totaling 5,422 acres, where land retirement and potential wetland and alkali sink habitat restoration could be attempted. Development of this option as a potential mitigation property is still in the planning stages, but preliminary conceptual design and restoration plans could include a combination of
restoration, enhancement, establishment, and preservation. The entire Smith Offering would not be used; instead, parcels within the Smith Offering would be identified for the greatest mitigation advantage, and the owners of those individual parcels would be approached by the Authority and FRA for negotiations. The preservation component of these parcels would concentrate on undisturbed vernal pools and depressional wetlands and intact, natural terrestrial communities, including alkali desert scrub and annual grassland. The restoration, enhancement, and establishment component of these parcels currently under agricultural production would consist of reestablishing the natural communities once present onsite, including alkali desert scrub, annual grassland, and a network of vernal pools and depressional wetlands, as identified through a review of historical aerial imagery and surrounding natural lands.

These parcels are in the general vicinity of the Atwell Island Land Retirement Demonstration Project, which has limited impediments to terrestrial or hydrologic connectivity. Together with portions of the Atwell Island Land Retirement Demonstration Project, these properties and the surrounding natural lands provide more than 7,000 acres of contiguous open space northeast of the Kern National Wildlife Refuge suitable for special-status wildlife species. The natural vegetation communities present on these properties provide relatively undisturbed, high-quality habitat suitable for blunt-nosed leopard lizard, Swainson’s hawk, western burrowing owl, Nelson’s antelope squirrel, Tipton kangaroo rat, and San Joaquin kit fox. All of these species have been reported in the vicinity and have the potential to be present on the properties. If restoration were successfully undertaken to restore the disturbed portions of these parcels to historical conditions, the development of natural vegetation communities could re-establish alkali rain pools and upland wildlife habitat suitable for blunt-nosed leopard lizard, Swainson’s hawk, western burrowing owl, Nelson’s antelope squirrel, Tipton kangaroo rat, and San Joaquin kit fox.

Activities at Potential Compensatory Mitigation Sites

Activities performed on behalf of the restoration, enhancement, establishment, and/or preservation of the potential compensatory mitigation sites (including other subsequent sites) include establishing standard banking instruments and protections; invasive/non-native plant and agricultural crop removal (i.e., through managed grazing or mechanical, tool, thermal, hand, or other means identified in Chapter C2 of the Caltrans Maintenance Manual); agricultural infrastructure removal and disposal (as required); channel/basin excavation; spoil disposal and reuse; soils stockpiling; grading and soil redistribution; soil amendment, compaction, and aeration; plant propagule collection; wetland and upland habitat enhancement and revegetation (hydroseed/plantings); channel enhancement and stabilization (large woody debris, step pools, willow waddles); erosion control installation and monitoring; irrigation installation and maintenance; plant propagule collection; periodic soil chemistry, wetlands, and restoration planting success monitoring; hydrogeomorphic monitoring; piezometer installation and groundwater monitoring; annual nest site monitoring; focused and protocol-level surveys for special-status species; limiting or restricting public access to identified sensitive resource areas (i.e., Panorama Preserve); erecting, repairing, and maintaining protective fencing, signage, and access roads; and general site inspection and maintenance (weeding, fire breaks, pruning, garbage/debris cleanup).

3.7.7.5 Impacts Resulting from Implementation of Mitigation Measures

Impacts may occur as a result of implementing Mitigation Measures BIO-MM#1 through BIO-MM#65. These impacts have been analyzed in the Biological Resource Mitigation Measure Impact Analysis; the mitigation measures have been grouped by types of activities that would be implemented and subsequently potentially result in environmental impacts:

- Preconstruction or protocol-level surveys.
- Construction monitoring.
• Avoidance and minimization of impacts on biological resources and wetlands during construction activities (e.g., temporary and permanent fencing installation, relocation of biological resources).

• Establishment and management of offsite compensatory mitigation lands.

• Onsite habitat restoration and re-vegetation, including the preservation, enhancement, and re-establishment of biological resources, which also may call for maintenance and monitoring activities.

No impacts on land use would occur as a result of these mitigation measures because they would not divide an established community or conflict with any applicable land use plans, policies, regulations, or HCPs. The mitigation measures would not conflict with any of the HCPs. In fact, one of the goals of the offsite compensatory mitigation is to protect lands identified in the HCPs and other conservation plans.

These mitigation measures would not induce substantial population growth (directly or indirectly), displace substantial numbers of people or existing housing, or necessitate the construction of replacement housing. No impacts on parks and recreation would occur because these measures would not prevent the use of parks or recreation areas, acquire any open-space resources, create a barrier to the access of any park or recreation area, result in acquisition of a recreation resource, increase the use of existing neighborhood and regional parks, or result in the alteration of existing recreational facilities. With some offsite compensatory mitigation sites, beneficial effects on parks and recreation would occur through an increase in contiguous habitat and wildlife viewing.

The above mitigation measure categories may result in impacts on:

• Transportation.
• Air quality and global climate change.
• Noise and vibration.
• Public Utilities and Energy.
• Biological resources.
• Hydrology and water resources.
• Geology, soils, and seismicity.
• Hazardous materials and wastes.
• Safety and security.
• Agricultural lands.
• Aesthetics and visual resources.
• Cultural and paleontological resources.

The Mitigation Measures identified in the associated environmental resource sections will also be applied to the offsite compensatory mitigation lands, as appropriate, to reduce, lessen, or avoid impacts on the these resources.

• AQ-MM#1. Reduce Criteria Exhaust Emissions from Construction Equipment.
• AQ-MM#2: Reduce Criteria Exhaust Emissions from On-Road Construction Equipment.
• AQ-MM#4: Offset Project Construction Emissions Through an SJVAPCD VERA.
• N&V-MM#1: Construction noise mitigation measures.
• Various Biological Resource and Wetland Mitigation Measures (BIO-MM), depending on the resource and proposed activity.
• AG-MM #1: Preserve the Total Amount of Prime Farmland, Farmland of Statewide Importance, Farmland of Local Importance, and Unique Farmland.
• VR-MM#1a Minimize Visual Disruption from Construction Activities.
• AVR-MM#1b: Minimize Light Disturbance during Construction.
• Cul-MM #1: Complete Inventory for Archaeological Resources and Comply with the Stipulations Regarding the Treatment of Archaeological Resources in the Section 106 PA and MOA Programmatic Agreement
• Cul-MM#2: Conduct Archaeological Training
• Arch-MM#3: Conduct Archaeological Monitoring in Areas of Sensitivity, Halt Work in the Event of a Discovery
• Arch-MM#4: Comply with State and Federal Law for Human Remains
• Cul-MM#5: Conduct Preconstruction Geoarchaeological Testing in Proximity to CA KER-2507
• Cul-MM #6: Complete Inventories for Historic Architectural Resources
• Cul-MM #7: Avoid and/or Monitor Adverse Construction Vibration Effects
• Cul-MM#8: Implement Protection and/or Stabilization Measures
• Cul-MM#9: Avoid Historic Architectural Resources at the Fresno Works–Fresno Heavy Maintenance Facility Site
• Cul-MM#10: Minimize Adverse Effects through Relocation of Historic Structures
• Cul-MM#11: Minimize Adverse Operational Noise Effects
• Cul-MM#12: Prepare and Submit Additional Recordation and Documentation Landscape Survey Documentation
• Cul-MM#13: Prepare Interpretive Materials
• Cul-MM#14: Plan Repair of Inadvertent Damage
• Cul-MM#15: Engage a Paleontological Resources Specialist to Direct Monitoring during Construction
• Cul-MM#16: Prepare and Implement a Paleontological Resource Monitoring and Mitigation Plan
• Cul-MM#17: Halt Construction When Paleontological Resources Are Found

Transportation

Preconstruction protocol-level surveys; construction monitoring; relocation of biological resources; management of offsite lands; onsite habitat restoration and re-vegetation, including the preservation, enhancement, and re-establishment of biological resources (which also may call for maintenance and monitoring activities) would require vehicle trips resulting in additional vehicle miles traveled (VMT) to transport project biologists, equipment, or other biological resources to various sites.

The mitigation measures would not result in any roadway design changes or conflict with an applicable plan, ordinance, or policy establishing performance standards or regarding public transit, bicycle, or pedestrian facilities. The number of vehicle trips required and VMT would be minor in comparison with the vehicle trips associated with the construction of the project, which were determined to be less than significant under CEQA, in Section 3.2, Transportation. Because the implementation of these mitigation measures would predominately occur in rural areas outside of urban areas, an increase in traffic is not expected to reduce level of service for both roadways and intersections or effect local circulation; the effect would not be considered significant.

Air Quality and Global Climate Change

Implementing the mitigation measures would require vehicle trips and could include ground-disturbing activities in addition to the use of mowers and other machinery that would result in emissions of criteria pollutants and greenhouse gases (GHGs).

These activities would occur in a limited capacity, only at a few sites for a short duration, in comparison with the overall construction-related emissions. Also, the emissions generated from thermal vegetation removal, mowers, or small hand tools would be minor compared with what is estimated for the project and would not affect the attainment status determinations made in
Section 3.3, Air Quality and Global Climate Change. Vegetation removal using thermal techniques include propane heating and steam and does not imply use of controlled burning. Implementation of the mitigation measures would not conflict with implementation of an applicable air quality plan or violate any air quality standards. Therefore, impacts would be less than significant under CEQA and would not be significant under NEPA.

Habitat restoration and re-vegetation, including the preservation, enhancement, and re-establishment of biological resources, would occur on offsite compensatory mitigation lands likely in rural areas, where sensitive receptors would be minimal. These measures do not include any materials or activities that may subject receptors to objectionable odors. As such, impacts would be less than significant under CEQA and would not be significant under NEPA.

Vehicle trips and the use of mowers and other machinery associated with the implementation of mitigation measures would contribute to GHG emissions. However, these activities would be short term in nature and, as stated in Section 3.3, Air Quality and Global Climate Change, the increase in the project’s construction GHG emissions generated during construction would be offset by the net GHG reductions during operation (because car and plane trips are removed in the Fresno to Bakersfield area) in less than 6 months of train operations. Therefore, the construction GHG emissions would be less than significant under CEQA and operational impacts would be beneficial because of the reduction of GHG emissions in the state. As such, the overall benefits of the project and included offsite compensatory mitigation lands would outweigh the impacts, and the GHG impacts as a result of the implementation of the mitigation measures would be less than significant under CEQA and would not be significant under NEPA.

Noise and Vibration

Mitigation measures may result in noise and vibration impacts from vehicles, heavy equipment, mowers, and other small machinery. No pile driving would occur as a result of implementation of mitigation measures.

Implementation of the mitigation measures may require the use of heavy-duty equipment for moving, excavating, and digging. These activities would occur in a limited capacity, only at a few sites for a short duration, in comparison with the overall construction noise of the full project. Thus, human receptors would not be exposed to the generation of noise levels in excess of established standards or local noise ordinances, which are presented in the Fresno to Bakersfield Section: Noise and Vibration Technical Report (Authority and FRA 2013c) and impacts would be less than significant. Noise and vibration impacts are discussed below under indirect impacts on biological resources.

Ground-disturbing activities and heavy equipment could create small amounts of ground-borne vibration. Table 3.4-13 in Section 3.4, Noise and Vibration, provides the approximate distances within which receivers could experience construction vibration effects. However, no pile driving would occur and mitigation activities would likely occur in more rural areas, receptors are likely to be farther away and impacts from ground-borne vibration.

Impacts from mitigation measures would be temporary and short term and would be less than significant under CEQA and would not be significant under NEPA.

Public Utilities and Energy

The removal of existing irrigation systems, removal of agricultural plantings, and removal of existing structures associated with implementation of the mitigation measures (specifically those related to construction activities at compensatory mitigation sites) would generate solid waste. In Section 3.6, Public Utilities and Energy, the Authority and FRA found that construction of any of the HST alternatives would generate an estimated 2.6 million cubic yards of solid waste.
Infrastructure (e.g., agricultural infrastructure involving wood, wire, metal, piping, and concrete materials) likely to be removed from compensatory mitigation sites would be small in scale compared to the project overall. Demolition of existing structures, is unlikely, however, if needed, may result in a temporary increase in waste disposal. The Authority's sustainability policy specifies all (100%) steel and concrete will be recycled and a minimum of 75% construction waste diverted from landfill—further reducing the impact of demolition waste from compensatory mitigation lands on area landfills.

As noted in Section 3.6, Public Utilities and Energy, it is estimated that the total volume of construction and demolition (C&D) material would be a maximum of 3 million cubic yards before recycling (approximately 8.1% of the total remaining capacity of the three active landfills that accept C&D material, which were identified in Table 3.6-7). After diversion of C&D materials, approximately 4% of the remaining capacity at active landfills would be sent to existing landfills. The C&D material from compensatory mitigation sites would be a trivial amount of that 4%. There exists sufficient permitted capacity at the landfills serving the project to accommodate solid waste disposal needs. Therefore, the impact of implementation biological resource measures, including offsite compensatory mitigation activities on area landfills would be less than significant under CEQA and would not be significant under NEPA.

At enhancement, restoration, and creation sites (e.g., Peck Island and River Ranch), where irrigation infrastructure is currently in place, the existing irrigation water supply may be temporarily used. Water supply uses may include regular watering of native plantings to facilitate vegetation establishment and growth. Once success criteria have been met, the irrigation system would be removed and the watering efforts would cease. During this period water use is not expected to exceed current water use patterns required for the existing agricultural uses. Post-restoration use would not require irrigation water, and as such would increase the amount of water available for downstream uses. No irrigation facility would be removed or added that would affect existing water supply for downstream water customers. Therefore, the impact on water supply would be less than significant under CEQA and would not be significant under NEPA.

Mitigation measures would not require construction or expansion of wastewater treatment facilities or stormwater drainage facilities. Portable toilets would be brought to some remote site areas for worker use, and would have a temporary and incremental increase in use of local wastewater treatment facilities that would not exceed capacity. There would be no impact to wastewater treatment or stormwater drainage facilities under CEQA and there would be no effect under NEPA.

Biological Resources

Implementation of the mitigation measures could result in potential impacts on biological resources. Installation of fencing, weed or vegetation control activities, relocation of special-status species to recipient sites, and construction activities on offsite compensatory mitigation lands could impact biological resources. Ground disturbance would be the primary activity associated with implementation of mitigation measures resulting in potential impacts on biological resources.

As stated in Section 3.7, Biological Resources and Wetlands, construction of HST alternatives would result in temporary direct or indirect impacts through the disturbance or removal of lands that have been determined to support or could potentially support special-status species, affect habitats of concern, or interfere with wildlife movement corridors.

Activities associated with mitigation measures could have a temporary, short-term, adverse effect on special-status species and critical habitat through habitat modification. The direct (e.g., construction activities and ground disturbance that could take, harm, or injure special status
species or fill jurisdictional waters) or indirect (e.g., construction noise could affect special status species behavior) effects are similar to the construction impacts described in Section 3.7.5, Environmental Consequences.

However, construction activities associated with the offsite compensatory mitigation sites would enhance degraded habitat and restore habitat to its natural state and would have a long-term beneficial effect. Also, construction activities at the mitigation sites could have temporary direct and indirect effects on special-status species, special-status plant communities, jurisdictional waters, conservation areas, or wildlife movement corridors (Table 3.7-23). However, these activities would occur as a result of habitat enhancement, restoration, establishment and/or preservation at compensatory mitigation sites that would be beneficial to these species and resources.

The offsite compensatory mitigation site activities associated with preservation are not expected to result in adverse impacts on biological resources. The activities associated with preservation include fence installation and maintenance, debris removal, signage, and short and long term monitoring. The preservation sites include Burr Ranch, Buena Vista Dairy, Yang, Saffel, Davis, Valdez, and portions of Fagundes, Peck Island, Panorama Vista Preserve, Old River Dairy, and River Ranch. Mitigation measures are not required for these sites and the associated impact is less than significant under CEQA and would not be significant under NEPA.

However, the construction activities associated with reestablishment, enhancement or creation may result in impacts on biological resources on the following compensatory mitigation sites: Fagundes, Peck Island, Panorama Vista Preserve, Old River Dairy, River Ranch and Smith Offering. The construction activities at these sites could include removal of existing irrigation systems, removal of agricultural plantings, removal of existing structures, ground disturbance associated with contouring and wetland creation, bank stabilization, removal of non-native vegetation, planting of native vegetation, installation of protective fencing, and short and long term monitoring. These activities could lead to short-term (occurring over one season) and temporary impacts on special-status species, habitats of concern and wildlife movement corridors.

The impacts associated with the temporary disturbance would be offset by the long term beneficial effects (e.g., creation of habitat for special-status species, preservation of habitats in perpetuity, improved condition of riverine features, habitat connectivity). Conversion of land from one land use type may result in an increase in suitable habitat for one species and decrease amount of suitable habitat for another species. At the Fagundes site, creation of vernal pools may temporarily reduce the amount of upland habitat for San Joaquin kit fox but will increase the amount of aquatic habitat for the California tiger salamander. In another example, the conversion of agricultural land to natural land type at Buena Vista Dairy may reduce the amount and quality of habitat available for Swainson’s hawk and other migratory birds, but habitat for other migratory birds, special status invertebrates, reptiles, and mammals would increase. These types of impacts are not considered adverse because similar suitable habitats exist in the vicinity and the long term benefits, including increase quantity and quality of suitable habitat for special-status species and increase condition of jurisdictional waters, greatly outweigh these impacts.

Implementation of Common Mitigation Measures, as well as those identified in Table 3.7-23, for each specific offsite compensatory mitigation site, would further avoid, minimize and reduce, and offset the potential short term impacts on biological resources. After implementation of the mitigation measures the impact on biological resources would be less than significant under CEQA and the effect would not be significant under NEPA.
Three HCPs have been identified in the project vicinity. The mitigation measures would not conflict with any of the HCPs. In fact, one of the goals of the offsite compensatory mitigation is to protect lands identified in the HCPs and other conservation plans.

Table 3.7-23
Overview of Compensatory Mitigation Property Impacts on Biological Resources

<table>
<thead>
<tr>
<th>Resource Type</th>
<th>Fagundes Properties</th>
<th>Peck Island Properties</th>
<th>Panorama Vista Preserve</th>
<th>Old River Dairy</th>
<th>River Ranch</th>
<th>Smith Offering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Special-Status Plant Species*</td>
<td>A number of special-status plant species have potential to occur, but no federal or state listed species are anticipated.</td>
<td>Vernal pool fairy shrimp, vernal pool tadpole shrimp, California tiger Salamander, migratory birds, Swainson's hawk, Western burrowing owl, San Joaquin kit fox.</td>
<td>Valley elderberry longhorn beetle, migratory birds, Western burrowing owl, Nelson's antelope squirrel, Tipton kangaroo rat, San Joaquin kit fox.</td>
<td>Blunt-nosed leopard lizard, migratory birds, Western burrowing owl, Nelson's antelope squirrel, Tipton kangaroo rat, San Joaquin kit fox.</td>
<td>Valley elderberry longhorn beetle, migratory birds, Swainson's hawk.</td>
<td>Vernal pool fairy shrimp, blunt nosed leopard lizard, migratory birds, Western burrowing owl, Swainson's hawk, Nelson's antelope squirrel, Tipton kangaroo rat, San Joaquin kit fox.</td>
</tr>
<tr>
<td>Special Status Wildlife Species*</td>
<td>Riparian areas and vernal pools</td>
<td>Oak woodlands and riparian areas</td>
<td>Alkali desert scrub, riparian areas</td>
<td>None</td>
<td>Oak woodland and riparian areas</td>
<td>Alkali desert scrub, vernal pool</td>
</tr>
<tr>
<td>Jurisdictional Waters</td>
<td>Vernal pools and riverine</td>
<td>Seasonal wetland and riverine</td>
<td>Seasonal wetland and riverine</td>
<td>None</td>
<td>Seasonal wetland and riverine</td>
<td>Vernal pools</td>
</tr>
<tr>
<td>Conservation Areas</td>
<td>Recovery plan area and designated critical habitat for vernal pool fairy shrimp, and vernal pool tadpole shrimp. Designated critical habitat for California tiger salamander.</td>
<td>None</td>
<td>Recovery plan area for Upland Species of the San Joaquin Valley</td>
<td>None</td>
<td>None</td>
<td>Recovery plan area for Upland Species of the San Joaquin Valley</td>
</tr>
<tr>
<td>Protected Trees</td>
<td>No impact</td>
<td>No impact</td>
<td>No impact</td>
<td>No impact</td>
<td>No impact</td>
<td>No impact</td>
</tr>
<tr>
<td>Wildlife Movement Corridors</td>
<td>Temporary interference but wildlife will have ability to move around construction areas.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.7-23
Overview of Compensatory Mitigation Property Impacts on Biological Resources

<table>
<thead>
<tr>
<th>Resource Type</th>
<th>Fagundes Properties</th>
<th>Peck Island Properties</th>
<th>Panorama Vista Preserve</th>
<th>Old River Dairy</th>
<th>River Ranch</th>
<th>Smith Offering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitigation Measures that will be Implemented</td>
<td>BIO-MM#1-15, BIO-MM#16, BIO-MM#17, BIO-MM#20, BIO-MM#22, BIO-MM#23, BIO-MM#25, BIO-MM#29, BIO-MM#30, BIO-MM#32, BIO-MM#34, BIO-MM#35, BIO-MM#36, BIO-MM#38, BIO-MM#40, BIO-MM#42, BIO-MM#43, BIO-MM#44, BIO-MM#45, BIO-MM#46, BIO-MM#47, BIO-MM#48, BIO-MM#49, and BIO-MM#52</td>
<td>BIO-MM#1-15, BIO-MM#16, BIO-MM#17, BIO-MM#21, BIO-MM#29, BIO-MM#30, BIO-MM#32, BIO-MM#34, BIO-MM#35, BIO-MM#36, BIO-MM#37, BIO-MM#38, BIO-MM#39, BIO-MM#40, BIO-MM#41, BIO-MM#42, BIO-MM#43, BIO-MM#44, BIO-MM#45, BIO-MM#46, BIO-MM#47, BIO-MM#48, BIO-MM#49, and BIO-MM#52</td>
<td>BIO-MM#1-15, BIO-MM#16, BIO-MM#17, BIO-MM#23, BIO-MM#27, BIO-MM#28, BIO-MM#29, BIO-MM#30, BIO-MM#31, BIO-MM#32, BIO-MM#33, BIO-MM#34, BIO-MM#35, BIO-MM#36, BIO-MM#37, BIO-MM#38, BIO-MM#39, BIO-MM#40, BIO-MM#41, BIO-MM#42, BIO-MM#43, BIO-MM#44, BIO-MM#45, BIO-MM#46, and BIO-MM#52</td>
<td>BIO-MM#1-15, BIO-MM#16, BIO-MM#17, BIO-MM#22, BIO-MM#23, BIO-MM#25, BIO-MM#29, BIO-MM#30, BIO-MM#32, BIO-MM#33, BIO-MM#34, BIO-MM#35, BIO-MM#36, BIO-MM#37, BIO-MM#38, BIO-MM#39, BIO-MM#40, BIO-MM#41, BIO-MM#42, BIO-MM#43, BIO-MM#44, BIO-MM#45, BIO-MM#46, and BIO-MM#52</td>
<td>BIO-MM#1-15, BIO-MM#16, BIO-MM#17, BIO-MM#21, BIO-MM#22, BIO-MM#23, BIO-MM#25, BIO-MM#27, BIO-MM#28, BIO-MM#29, BIO-MM#30, BIO-MM#31, BIO-MM#32, BIO-MM#33, BIO-MM#34, BIO-MM#35, BIO-MM#36, BIO-MM#37, BIO-MM#38, BIO-MM#39, BIO-MM#40, BIO-MM#41, BIO-MM#42, BIO-MM#43, BIO-MM#44, BIO-MM#45, BIO-MM#46, and BIO-MM#52</td>
<td></td>
</tr>
</tbody>
</table>

CEQA Significance After Mitigation/NEPA Determination

- Less than Significant/Not Significant

Note:

- **A** Detailed assessments of all special-status species has not been conducted on the compensatory mitigation sites. Some focused surveys have occurred for specific (target species). Species list here are provided as an overview. Additional information will be available and site specific design and field assessments are conducted.
- **B** The Common Mitigation Measures would also be implemented.

Hydrology and Water Resources

Measures at compensatory mitigation sites could result in the following activities: channel/basin excavation, wetland and upland habitat enhancement and re-vegetation (hydroseed/plantings), channel enhancement and stabilization (large woody debris, step pools, and willow waddles), erosion control installation and monitoring, irrigation installation and maintenance, installation of hydrogeomorphic monitoring piezometers, and groundwater monitoring.

As stated in Section 3.8, Hydrology and Water Resources, construction BMPs such as cofferdams would be used to minimize or avoid discharge of sediment from construction sites and would comply with the standards described in Section 3.8.6, Project Design Features. Mitigation measures would not include actions that would deplete groundwater supplies or interfere with groundwater recharge, such as creating an increase in impervious surfaces.
At Peck Island and River Ranch, where irrigation installation and maintenance has been proposed as part of wetland restoration, enhancement, establishment, and preservation activities, a preliminary mitigation analysis, which included a hydrological investigation, was performed for the conceptual restoration design to determine these sites’ suitability and feasibility for aquatic resource mitigation. These studies concluded that conditions on site are conducive to aquatic resource mitigation activities without affecting the groundwater. Similar analyses would be performed for additional sites where irrigation installation and maintenance are proposed. Therefore, impacts on groundwater would be less than significant under CEQA and the effect would not be significant under NEPA.

Temporary construction activities associated with mitigation measures would not alter drainage patterns to a degree that would result in flooding or exceed the capacity of stormwater drainage facilities.

Geology, Soils, and Seismicity

Implementation of the mitigation measures would not expose people or structures to potential substantial adverse effects from the ruptures of an earthquake, strong seismic ground shaking, seismic-related ground failure, or landslides. The likelihood of a large earthquake during mitigation implementation is considered very low because of the comparatively short duration of these activities relative to the frequency of large earthquakes. No structures are proposed as part of the mitigation. Therefore, no impacts would occur under CEQA and there would be no effect under NEPA.

Excavation and vegetation removal could result in soil erosion. However, erosion control measures would be implemented that would render the risk of substantial soil erosion to a less than significant impact under CEQA and would not result in a significant effect under NEPA.

Mitigation measures do not propose any structures or use of septic tanks that could be impacted by unstable soils and result in landslides, lateral spreading, subsidence, liquefaction, or collapse. As such, no impacts would occur under CEQA and there would be no effect under NEPA.

Hazardous Materials and Wastes

Through the establishment and management of offsite compensatory mitigation lands, measures such as agricultural infrastructure removal, operation of heavy equipment, and use of Caltrans-approved herbicides could result in impacts related to hazardous materials and wastes.

Implementation of mitigation measures would result in a temporary increase in the transportation, use, and storage of hazardous materials, specifically herbicides. Facilities and construction sites that use, store, generate, or dispose of hazardous materials or wastes and hazardous material/waste transporters are required to maintain plans for warning, notification, evacuation, and site security under regulations, as described in Section 3.10.2, Laws, Regulations, and Orders.

Demolition of existing structures, is unlikely, however, if needed, may result in a temporary increase in waste disposal. However, structures likely to be removed would be small in scale, such as agricultural infrastructure involving wood, wire, metal, piping, and concrete materials. Routine transport, use, storage, and disposal of hazardous materials are governed by numerous laws, regulations, and ordinances in addition to plans and BMPs developed as part of the project that would be implemented as part of mitigation measures, as applicable. Routine use and disposal of hazardous materials and wastes through implementation of mitigation measures would be temporary and regarded as less than significant under CEQA, and would not result in a significant effect under NEPA.
Accidental spills or releases could occur during transport, storage, use, or disposal of hazardous materials and wastes during implementation of the mitigation measures. As stated in Section 3.10, Hazardous Materials and Wastes, standard accident and hazardous materials recovery training and procedures are enforced by the state and followed by private state-licensed, certified, and bonded transportation companies and contractors. Further, a spill prevention, containment, and countermeasures (SPCC) plan or, for smaller quantities, a spill prevention and response plan, which identifies BMPs for spill and release prevention and provides procedures and responsibilities for rapidly, effectively, and safely cleaning up and disposing of any spills or releases, would be established for the project and therefore incorporated, as applicable, to the implementation of mitigation measures. Compliance with various federal, state, and local regulations would minimize the risk of a spill or accidental release of hazardous materials, and the impact of such a release would be less than significant under CEQA, and would not result in a significant effect under NEPA.

No extremely hazardous substances or mixtures containing extremely hazardous substances would be used as part of the biological mitigation measures.

Offsite compensatory mitigation will not occur on properties included on a list of hazardous materials sites compiled pursuant to California Government Code Section 65962.5 (the Cortese list) and, as a result, would not create a significant hazard to the public or the environment.

Safety and Security

Preconstruction protocol-level surveys, construction monitoring, relocation of biological resources, management of offsite lands, and onsite habitat restoration and re-vegetation, including the preservation, enhancement, and re-establishment of biological resources (which also may call for maintenance and monitoring activities) would require vehicle trips to transport project biologists, equipment, or other biological resources to various sites. Project design features including the dedicated wildlife movement structures and are therefore evaluated in the Section 3.11, Safety and Security.

The mitigation measures would not result in any roadway design changes or conflict with an applicable plan, ordinance, or policy establishing performance standards or regarding public transit, bicycle, or pedestrian facilities. Also, these mitigation measures would not create hazards due to a design feature. No impacts would occur under CEQA, and no effects would occur under NEPA.

None of the offsite compensatory mitigation sites encroach on areas covered by airport land use compatibility plans (Fresno County Airport Land Use Commission 2010; Kings County et al. 1994; Kern County Planning and Community Development Department 2011). Therefore, there would be no safety hazard as a result of implementation of mitigation measures onsite or offsite, and therefore the impacts would be less than significant under CEQA, and the effects would not be significant effect under NEPA.

Implementation of the mitigation measures would not result in a substantial amount of traffic and therefore would not affect emergency access or an emergency response plan. As stated in Section 3.11, Safety and Security, the California Department of Forestry and Fire Protection (CALFIRE) has prepared the Strategic Fire Plan for California, which is the state’s road map for reducing the risk of wildfire (CALFIRE [1996] 2010). Part of this plan identifies and assesses community assets at risk of wildfire damage. CALFIRE has generated a list of California communities at risk for wildfire and created Fire Hazard Severity Zones (CALFIRE 2007). The project region is not in any of the Fire Hazard Severity Zones, and the area crossed by the project alternatives is not considered to pose a significant risk for wildland fires. No impacts would occur under CEQA, and no effects would occur under NEPA.
Agricultural Lands

Through establishment and management of offsite compensatory mitigation lands, invasive/non-native plant and agricultural crop removal (i.e., through managed grazing or mechanical, tool, hand, or chemical means) and agricultural infrastructure removal and disposal, as required, could result in impacts on agricultural lands. As stated in Section 3.14, Agricultural Lands, there are no forests between Fresno and Bakersfield; as such, implementation of the mitigation measures would not conflict with zoning or re-zoning of forest land, result in a loss of forest, or a conversion of forests and no impacts on forests would occur.

Establishment and management of offsite compensatory mitigation lands are located on farmlands identified under the Farmland Mapping and Monitoring Program (FMMP) as prime, unique, and farmland of statewide importance to non-agricultural use.

It is important to note that not all offsite compensatory mitigation may be acquired and as such the agriculture land impacts represent the maximum potential impact for a given county. In addition, permittee-responsible mitigation which will include enhancement, restoration and preservation, is not likely to result in conversion of FMMP lands to non-agricultural compatible use.

Of the 12 potential permittee-responsible mitigation sites currently under consideration, one property (i.e. Fagundes) is currently being managed for cattle grazing, an agricultural land use that is compatible with the special-status species and jurisdictional waters proposed for protection at this site (e.g., vernal pools, vernal pool fairy shrimp, vernal pool tadpole shrimp, California tiger salamander, and San Joaquin kit fox). With certain restrictions, as stipulated in the final compensatory mitigation plan, grazing would be included as part of the final palette of land management tools. As such, the use of the farmland would not be considered a conversion.

Nine of the 12 potential permittee-responsible mitigation sites have been partially or wholly designated as FMMP (prime, unique, farmland of statewide importance to non-agricultural use) and Williamson Act lands (prime, non-prime), but which have otherwise been mapped and site-verified as natural land types (i.e. alkali desert scrub, non-native annual grassland, riverine, riparian). These properties may, on occasion, be grazed by cattle, goats, or sheep, but are nevertheless dominated by natural vegetation communities and are not actively used for agricultural purposes. As such, preservation of these lands would be consistent with the FMMP existing uses, and would not convert active agricultural lands.

Although permittee-responsible mitigation would not likely convert all FMMP lands, and the permittee-responsible mitigation would not likely change the agricultural use. Mitigation Measure AG-MM#1: Preserve the Total Amount of Prime Farmland, Farmland of Statewide Importance, Farmland of Local Importance, and Unique Farmland, would be implemented to minimize impacts on agricultural lands associated with the offsite compensatory mitigation lands. Because mitigation site plans have not been finalized, and with implementation of project design features and AG-MM#1, impacts on FMMP lands would be less than significant under CEQA and would not result in significant effects under NEPA.

Ten compensatory mitigation sites would be located on Williamson Act lands. Williamson Act contracts are between a landowner and the county. Each contract has conditions for the type of uses that are permitted and in some cases the amount of output that must be produced by the land under contract. The Authority and FRA are not far enough along in the negotiation process to have had access to the specific Williamson Act contracts to determine if the mitigation activities and preservation proposed for the particular property is consistent with the terms and conditions of the contract or not.
In most cases, the mitigation actions and preservation would be consistent with the terms and conditions of the Williamson Act contract because there would be no change in how the land would be used—it would simply remain in its current natural state. In a few cases, the mitigation actions and preservation may be inconsistent with the terms and conditions of the Williamson Act contract. In these cases, the landowner may request the terms and conditions of the Williamson Act contract be amended by the county. This would ensure that the land would not be converted to urban uses and the landowner would continue to enjoy the benefits of the Williamson Act contract.

If the terms and conditions cannot be amended, then the Authority and FRA could coordinate with natural resource regulatory agencies (e.g., USACE, USFWS, SWRCB, and CDFW) as appropriate to make the terms and conditions of the conservation easement consistent with the terms and conditions of the Williamson Act contract. If the terms and conditions cannot be made consistent, the landowner who voluntarily seeks to accept the conservation easement may choose to cancel the Williamson Act contract.

The preservation of the land through the use of conservation easements and acquisition of the property would not threaten or violate the terms of most of the Williamson Act contracts and the preponderance of Williamson Act contracts would continue and be unaffected by compensatory mitigation efforts. Impacts on Williamson Act lands would be less than significant under CEQA and would not result in significant effects under NEPA.

Aesthetics and Visual Resources

Public access to identified sensitive resource areas on offsite mitigation lands could be limited/restricted through the use of fencing. Also, avoidance and minimization of impacts during construction activities, including temporary and permanent fencing installation, could result in impacts on aesthetics and visual resources. Fencing could include permanent barb-wire fencing that would be consistent with fencing in a rural setting to facilitate wildlife movement and dispersal, especially adjacent to wildlife movement corridors. Temporary fencing would include protective wildlife exclusion fencing to establish buffers around ESAs, ERAs, and construction staging areas. These features could be incompatible and out of scale with the existing visual character in locations where viewer sensitivity and exposure are high.

During construction, fencing would be temporary and would be brightly colored to identify a construction staging area or establish wildlife buffer areas. Wildlife exclusion fencing would consist of silt fencing or similar material, which is typically black or green and approximately 3 feet tall. The design specifications of the exclusion fencing would be determined through consultation with USFWS and/or CDFW. In visually sensitive and rural areas, this fencing would contrast with the existing environment, but it would not be tall enough to affect any scenic vistas, substantially degrade any scenic resources, or create a new source of light or glare due to the temporary nature of this type of fencing. Therefore, impacts would be considered less than significant under CEQA and the effects would not be significant under NEPA.

As stated above, permanent fencing would be consistent with final project design. Permanent fencing installed to restrict public access would result in a change in visual character, but allow for wildlife movement to continue. However, the fencing would be consistent with other existing fencing in the area and would not affect any scenic vistas, substantially degrade any scenic resources, or create a new source of light or glare due to the temporary nature of this type of fencing. Therefore, impacts would be considered less than significant under CEQA and the effects would not be significant under NEPA.
Cultural and Paleontological Resources

This section analyzes the potential for effects on previously recorded cultural resources at compensatory mitigation sites and the resources that may be encountered during future inventories or construction.

Seven cultural resources were previously recorded on mitigation sites:

- P-15-012073 (an historic archaeological site).
- P-15-012074 (a prehistoric archaeological site).
- P-15-0012090 (a prehistoric archaeological site).
- P-15-001202 (a prehistoric archaeological site).
- P-15-004735 (an historic archaeological site).
- P-15-007675 (plaque, California Register of Historical Landmarks No. 137).
- P-10-005032 (historic archaeological site).

Ground-disturbing activities associated with the restoration, enhancement, or creation of natural communities or waters on offsite compensatory mitigation lands could result in effects on these archaeological deposits. These resources may be eligible for the California Register of Historical Resources (CRHR) or the National Register of Historic Places (NRHP); available records are not sufficient to demonstrate that these resources are eligible or ineligible for register listing. The Authority and FRA will comply with CUL-MM#1, as described in Section 3.17, Cultural and Paleontological Resources, by evaluating these sites for the CRHR and NRHP and preparing additional CEQA documentation. If the sites are register-eligible, they will be preserved in place. For these reasons, potential impacts on previously recorded cultural resources are of negligible intensity under NEPA and less than significant under CEQA.

The Authority and FRA do not anticipate that historic architectural resources would be directly or indirectly affected by enhancement, restoration, or creation of natural communities and waters on compensatory mitigation sites because existing structures would be avoided and changes to the mitigation sites would enhance the existing natural setting rather than introducing new elements to the setting. For these reasons, impacts on historic architectural resources are of negligible intensity under NEPA and less than significant under CEQA.

If previously unrecorded cultural resources are encountered during ground-disturbing work, the FRA and Authority will comply with CUL-MM#2, CUL-MM#3, and CUL-MM#4. For these reasons impacts on historic architectural resources are of negligible intensity under NEPA and less than significant under CEQA.

Summary

Although biological resource and wetland mitigation measures would result in impacts on other environmental and community resources, these impacts would be incremental, and minimal in comparison with construction of the greater project. The construction and project mitigation measures would be implemented; with the implementation of mitigation measures, the resulting impacts would be less than significant under CEQA and would not be significant under NEPA.

3.7.8 NEPA Impacts Summary

Under the No Project Alternative, existing development trends affecting biological resources are expected to continue and to potentially further degrade some natural systems. Expanded development in the region would continue to result in direct effects, including habitat loss, mortality from vehicle strikes, and indirect effects associated with habitat degradation from pollution, noise, and dust effects on special-status species and habitats, creation of barriers to wildlife movement, habitat fragmentation, and other effects. These impacts would be of
moderate intensity, resulting in incremental regional effects on biological resources. However, given that at the regional scale (i.e., the San Joaquin Valley), the remaining biological resources are rare, imperiled, or otherwise already degraded, the continued development and degradation of biological resources under the No Project Alternative is considered a significant impact. However, ongoing and future conservation planning and regulatory controls are a mechanism for maintaining a degree of natural heritage within the ongoing development trend.

The intensity of effects on various biological resources varies by alternative alignment. Table 3.7-24 and Table 3.7-25 compare the intensity of effects on biological resources for each alternative alignment and the corresponding section of the BNSF alternative for the construction period and the project period, respectively. Table 3.7-26 summarizes the intensity of effects on biological resources for the station and HMF alternatives.
Table 3.7-24
Comparison of Intensity of Effects under NEPA during the Construction Period between HST Alignment Alternatives and the Corresponding Segments of the BNSF Alternative

<table>
<thead>
<tr>
<th>HST Alternatives</th>
<th>Special-Status Plant Species</th>
<th>Special-Status Wildlife Species</th>
<th>Special-Status Plant Communities</th>
<th>Jurisdictional Waters</th>
<th>Conservation Areas</th>
<th>Wildlife Movement Corridors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Recovery Plans</td>
<td>Allensworth ER</td>
</tr>
<tr>
<td>Hanford West Bypass 1</td>
<td>Negligible</td>
<td>Moderate</td>
<td>Negligible</td>
<td>Substantial</td>
<td>No Effect</td>
<td>No Effect</td>
</tr>
<tr>
<td>Corresponding Segment of BNSF Alt.</td>
<td>Negligible</td>
<td>Substantial</td>
<td>Negligible</td>
<td>Substantial</td>
<td>No Effect</td>
<td>No Effect</td>
</tr>
<tr>
<td>Hanford West Bypass 2</td>
<td>Negligible</td>
<td>Moderate</td>
<td>Negligible</td>
<td>Substantial</td>
<td>No Effect</td>
<td>No Effect</td>
</tr>
<tr>
<td>Corresponding Segment of BNSF Alt.</td>
<td>Negligible</td>
<td>Substantial</td>
<td>Negligible</td>
<td>Substantial</td>
<td>No Effect</td>
<td>No Effect</td>
</tr>
<tr>
<td>Corcoran Elevated</td>
<td>Negligible</td>
<td>Moderate</td>
<td>Negligible</td>
<td>Substantial</td>
<td>Moderate</td>
<td>No Effect</td>
</tr>
<tr>
<td>Corresponding Segment of BNSF Alt.</td>
<td>Negligible</td>
<td>Moderate</td>
<td>Negligible</td>
<td>Substantial</td>
<td>Moderate</td>
<td>No Effect</td>
</tr>
<tr>
<td>Corcoran Bypass</td>
<td>Negligible</td>
<td>Moderate</td>
<td>Negligible</td>
<td>Substantial</td>
<td>Moderate</td>
<td>No Effect</td>
</tr>
<tr>
<td>Corresponding Segment of BNSF Alt.</td>
<td>Negligible</td>
<td>Moderate</td>
<td>Negligible</td>
<td>Substantial</td>
<td>Moderate</td>
<td>No Effect</td>
</tr>
<tr>
<td>Allensworth Bypass</td>
<td>Moderate</td>
<td>Moderate</td>
<td>Moderate</td>
<td>Substantial</td>
<td>Moderate</td>
<td>No Effect</td>
</tr>
<tr>
<td>Corresponding Segment of BNSF Alt.</td>
<td>Negligible</td>
<td>Moderate</td>
<td>Moderate</td>
<td>Substantial</td>
<td>Moderate</td>
<td>No Effect</td>
</tr>
<tr>
<td>Wasco-Shafter Bypass</td>
<td>Negligible</td>
<td>Moderate</td>
<td>Negligible</td>
<td>Moderate</td>
<td>Moderate</td>
<td>No Effect</td>
</tr>
<tr>
<td>Corresponding Segment of BNSF Alt.</td>
<td>Negligible</td>
<td>Moderate</td>
<td>Negligible</td>
<td>Moderate</td>
<td>Moderate</td>
<td>No Effect</td>
</tr>
<tr>
<td>Bakersfield South</td>
<td>Substantial</td>
<td>Substantial</td>
<td>Substantial</td>
<td>Substantial</td>
<td>Moderate</td>
<td>No Effect</td>
</tr>
<tr>
<td>Corresponding Segment of BNSF Alt.</td>
<td>Substantial</td>
<td>Substantial</td>
<td>Substantial</td>
<td>Substantial</td>
<td>Substantial</td>
<td>No Effect</td>
</tr>
<tr>
<td>Bakersfield Hybrid</td>
<td>Substantial</td>
<td>Substantial</td>
<td>Substantial</td>
<td>Substantial</td>
<td>Moderate</td>
<td>No Effect</td>
</tr>
<tr>
<td>Corresponding Segment of BNSF Alt.</td>
<td>Substantial</td>
<td>Substantial</td>
<td>Substantial</td>
<td>Substantial</td>
<td>Substantial</td>
<td>No Effect</td>
</tr>
</tbody>
</table>

Comparison does not include conditions when the alternatives are considered in combination with the remaining segments of the BNSF Alternative.
Table 3.7-25
Comparison of Intensity of Permanent Effects under NEPA from the Project between HST Alignment Alternatives and the Corresponding Segments of the BNSF Alternative

<table>
<thead>
<tr>
<th>HST Alternatives a</th>
<th>Special-Status Plant Species</th>
<th>Special-Status Wildlife Species</th>
<th>Special-Status Plant Communities</th>
<th>Jurisdictional Waters</th>
<th>Conservation Areas</th>
<th>Recovery Plans</th>
<th>Allenworth ER</th>
<th>HCPs</th>
<th>Protected Trees</th>
<th>Wildlife Movement Corridors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hanford West Bypass 1</td>
<td>Moderate</td>
<td>Substantial</td>
<td>Moderate</td>
<td>Substantial</td>
<td>No Effect</td>
<td>No Effect</td>
<td>No Effect</td>
<td>Substantial</td>
<td>Moderate</td>
<td></td>
</tr>
<tr>
<td>Corresponding Segment of BNSF Alt.</td>
<td>Moderate</td>
<td>Substantial</td>
<td>Moderate</td>
<td>Substantial</td>
<td>No Effect</td>
<td>No Effect</td>
<td>No Effect</td>
<td>Substantial</td>
<td>Moderate</td>
<td></td>
</tr>
<tr>
<td>Hanford West Bypass 2</td>
<td>Moderate</td>
<td>Substantial</td>
<td>Moderate</td>
<td>Substantial</td>
<td>No Effect</td>
<td>No Effect</td>
<td>No Effect</td>
<td>Substantial</td>
<td>Moderate</td>
<td></td>
</tr>
<tr>
<td>Corresponding Segment of BNSF Alt.</td>
<td>Moderate</td>
<td>Substantial</td>
<td>Moderate</td>
<td>Substantial</td>
<td>No Effect</td>
<td>No Effect</td>
<td>No Effect</td>
<td>Substantial</td>
<td>Moderate</td>
<td></td>
</tr>
<tr>
<td>Corcoran Elevated</td>
<td>Moderate</td>
<td>Substantial</td>
<td>Moderate</td>
<td>Substantial</td>
<td>Substantial</td>
<td>No Effect</td>
<td>No Effect</td>
<td>Substantial</td>
<td>Moderate</td>
<td></td>
</tr>
<tr>
<td>Corresponding Segment of BNSF Alt.</td>
<td>Moderate</td>
<td>Substantial</td>
<td>Moderate</td>
<td>Substantial</td>
<td>Substantial</td>
<td>No Effect</td>
<td>No Effect</td>
<td>Substantial</td>
<td>Moderate</td>
<td></td>
</tr>
<tr>
<td>Corcoran Bypass</td>
<td>Moderate</td>
<td>Substantial</td>
<td>Moderate</td>
<td>Substantial</td>
<td>Substantial</td>
<td>No Effect</td>
<td>No Effect</td>
<td>Substantial</td>
<td>Moderate</td>
<td></td>
</tr>
<tr>
<td>Corresponding Segment of BNSF Alt.</td>
<td>Moderate</td>
<td>Substantial</td>
<td>Moderate</td>
<td>Substantial</td>
<td>Substantial</td>
<td>No Effect</td>
<td>No Effect</td>
<td>Substantial</td>
<td>Moderate</td>
<td></td>
</tr>
<tr>
<td>Allensworth Bypass</td>
<td>Substantial</td>
<td>Substantial</td>
<td>Substantial</td>
<td>Substantial</td>
<td>Substantial</td>
<td>No Effect</td>
<td>No Effect</td>
<td>Negligible</td>
<td>Substantial</td>
<td></td>
</tr>
<tr>
<td>Corresponding Segment of BNSF Alt.</td>
<td>Substantial</td>
<td>Substantial</td>
<td>Substantial</td>
<td>Substantial</td>
<td>Substantial</td>
<td>No Effect</td>
<td>No Effect</td>
<td>Substantial</td>
<td>Moderate</td>
<td></td>
</tr>
<tr>
<td>Wasco-Shafter Bypass</td>
<td>Moderate</td>
<td>Substantial</td>
<td>Moderate</td>
<td>Moderate</td>
<td>Substantial</td>
<td>No Effect</td>
<td>No Effect</td>
<td>Substantial</td>
<td>Negligible</td>
<td></td>
</tr>
<tr>
<td>Corresponding Segment of BNSF Alt.</td>
<td>Negligible</td>
<td>Substantial</td>
<td>Negligible</td>
<td>Moderate</td>
<td>Substantial</td>
<td>No Effect</td>
<td>No Effect</td>
<td>Moderate</td>
<td>Negligible</td>
<td></td>
</tr>
<tr>
<td>Bakersfield South</td>
<td>Moderate</td>
<td>Moderate</td>
<td>Moderate</td>
<td>Substantial</td>
<td>Substantial</td>
<td>No Effect</td>
<td>No Effect</td>
<td>Substantial</td>
<td>Negligible</td>
<td></td>
</tr>
<tr>
<td>Corresponding Segment of BNSF Alt.</td>
<td>Moderate</td>
<td>Moderate</td>
<td>Moderate</td>
<td>Substantial</td>
<td>Substantial</td>
<td>No Effect</td>
<td>No Effect</td>
<td>Substantial</td>
<td>Negligible</td>
<td></td>
</tr>
<tr>
<td>Bakersfield Hybrid</td>
<td>Moderate</td>
<td>Moderate</td>
<td>Moderate</td>
<td>Substantial</td>
<td>Substantial</td>
<td>No Effect</td>
<td>No Effect</td>
<td>Substantial</td>
<td>Negligible</td>
<td></td>
</tr>
<tr>
<td>Corresponding Segment of BNSF Alt.</td>
<td>Moderate</td>
<td>Moderate</td>
<td>Moderate</td>
<td>Substantial</td>
<td>No Effect</td>
<td>No Effect</td>
<td>Substantial</td>
<td>Negligible</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comparison does not include when the alternatives are considered in combination with the remaining segments of the BNSF Alternative.
Table 3.7-26
Summary of Intensity of Effects under NEPA for HMF and Station Alternatives

<table>
<thead>
<tr>
<th>HMF/Station Alternatives</th>
<th>Special-Status Plant Species</th>
<th>Special-Status Wildlife Species</th>
<th>Special-Status Plant Communities</th>
<th>Jurisdictional Waters</th>
<th>Conservation Areas</th>
<th>ER = Allensworth Ecological Reserve</th>
<th>HCPs = Habitat Conservation Plan</th>
<th>Protected Trees</th>
<th>Wildlife Movement Corridors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresno Works–Fresno</td>
<td>Negligible</td>
<td>Substantial</td>
<td>Negligible</td>
<td>Moderate</td>
<td>No effect</td>
<td>No effect</td>
<td>No effect</td>
<td>Substantial</td>
<td>No effect</td>
</tr>
<tr>
<td>Kings County–Hanford</td>
<td>Negligible</td>
<td>Substantial</td>
<td>Negligible</td>
<td>Moderate</td>
<td>No effect</td>
<td>No effect</td>
<td>No effect</td>
<td>No effect</td>
<td>No effect</td>
</tr>
<tr>
<td>KCOG–Wasco</td>
<td>No effect</td>
<td>Substantial</td>
<td>No effect</td>
<td>Moderate</td>
<td>Substantial</td>
<td>No effect</td>
<td>No effect</td>
<td>No effect</td>
<td>No effect</td>
</tr>
<tr>
<td>KCOG–Shafter East</td>
<td>Negligible</td>
<td>Substantial</td>
<td>No effect</td>
<td>Moderate</td>
<td>No effect</td>
<td>No effect</td>
<td>No effect</td>
<td>No effect</td>
<td>No effect</td>
</tr>
<tr>
<td>KCOG–Shafter West</td>
<td>No effect</td>
<td>Substantial</td>
<td>Negligible</td>
<td>No effect</td>
<td>No effect</td>
<td>No effect</td>
<td>No effect</td>
<td>No effect</td>
<td>No effect</td>
</tr>
<tr>
<td>Fresno Station–Mariposa</td>
<td>No effect</td>
<td>Negligible</td>
<td>No effect</td>
<td>No effect</td>
<td>No effect</td>
<td>No effect</td>
<td>No effect</td>
<td>Substantial</td>
<td>No effect</td>
</tr>
<tr>
<td>Kings/Tulare Regional Station–West</td>
<td>Negligible</td>
<td>Moderate</td>
<td>Negligible</td>
<td>No effect</td>
<td>No effect</td>
<td>No effect</td>
<td>No effect</td>
<td>No effect</td>
<td>No effect</td>
</tr>
<tr>
<td>Kings/Tulare Regional Station–East</td>
<td>No effect</td>
<td>Negligible</td>
<td>No effect</td>
</tr>
<tr>
<td>Bakersfield Station–North</td>
<td>No effect</td>
<td>Negligible</td>
<td>No effect</td>
<td>Moderate</td>
<td>No effect</td>
<td>No effect</td>
<td>No effect</td>
<td>Moderate</td>
<td>No effect</td>
</tr>
<tr>
<td>Bakersfield Station–South</td>
<td>No effect</td>
<td>Negligible</td>
<td>No effect</td>
<td>Moderate</td>
<td>No effect</td>
<td>No effect</td>
<td>No effect</td>
<td>Substantial</td>
<td>No effect</td>
</tr>
<tr>
<td>Bakersfield Station–Hybrid</td>
<td>No effect</td>
<td>Negligible</td>
<td>No effect</td>
<td>Moderate</td>
<td>No effect</td>
<td>No effect</td>
<td>No effect</td>
<td>No effect</td>
<td>No effect</td>
</tr>
</tbody>
</table>

ER = Allensworth Ecological Reserve
HCP = Habitat Conservation Plan
HMF = Heavy Maintenance Facility
KCOG = Kern Council of Governments
The overall effect of the HST project on biological resources would be dependent on the intensity of the project’s effects, the context in which these effects occur, and the measures implemented to mitigate the impacts of the project. The overall intensity and significance of the project impacts for the resource-specific context under NEPA are summarized for each biological resource below.

- **Special-status plant species:** Suitable habitats and known occurrences of special-status plant species are rare in the Special-Status Plant Study Area and throughout the Central Valley. The majority of the land in the Central Valley has been converted to agricultural uses (NRCS 2006), and the natural areas that remain are largely disturbed and fragmented. Therefore, existing populations and suitable habitats for special-status plant species are rare on a regional scale. Special-status plant species and potentially suitable habitats occur within the project footprint, and would be affected by construction period activities and project operations. However, through implementation of mitigation measures, as described in Section 3.7.7, Mitigation Measures, effects on special-status plant species would be avoided, where possible, or would be slight and would result in impacts of negligible regional intensity. Therefore, the effects of the HST project on special-status plant species would not be significant under NEPA.

- **Special-status wildlife species:** Suitable habitats for special-status wildlife have been significantly reduced in the Habitat Study Area and throughout the Central Valley, where 80% of the land has been converted to agricultural uses (NRCS 2006). The natural areas that remain are largely disturbed and fragmented. These changes to the landscape have significantly reduced suitable habitat for wildlife species, with an especially detrimental effect on species that rely on specific or sensitive habitats, such as vernal pool branchiopods that depend on vernal pool habitats. Some special-status species have adapted to human-altered environments, because their natural habitats have been reduced; examples include San Joaquin kit fox, which utilize urban Bakersfield (USFWS 2010), and Swainson’s hawk, which forage in agricultural fields (CDFG 2008). However, these species still rely on natural habitats, which are rare on a regional scale. The HST project would affect special-status wildlife species and their habitat. However, through implementation of mitigation measures, as described in Section 3.7.7, Mitigation Measures, effects on special-status wildlife species would be avoided, where possible, or would be of negligible intensity in the regional context. Therefore, the effects of the HST project on special-status wildlife species would not be significant under NEPA.

- **Special-status plant communities:** The special-status plant communities observed in the Special-Status Plant Study Area are ranked as rare in California, or were determined to be rare during botanical surveys in the Special-Status Plant Study Area. Suitable habitats for these communities have been significantly diminished due to land use conversion in the Central Valley. Most of the communities observed in the Special-Status Plant Study Area do not represent high-quality occurrences of these communities because they have been disturbed through nonnative species invasion and fragmentation. Therefore, although these communities are rare on a regional scale, they do not represent the highest conservation priority because they are generally small and disturbed (CDFG 2012b). Also, potential effects of the HST project on these communities would be minimized through the implementation of mitigation measures, as described in Section 3.7.7, Mitigation Measures, resulting in regional impacts of negligible intensity. Therefore, the effects of the HST project on special-status plant communities would not be significant under NEPA.

- **Jurisdictional waters:** The southern Central Valley once sustained four large, shallow, terminal lakes and rich riparian wetland habitats fed by waters of the Kings River, the Kaweah River (the source of Poso Creek), the Tule River, and the Kern River flowing from the Sierra Nevada (USDA 1982, 1986). However, more than 88% of wetlands in the southern
Central Valley have been converted to agriculture or urban use (Kelly et al. 2005). Streams and rivers in the Wetland Study Area have been dredged, culverted, diverted, dewatered, channelized, or have had their active floodplains severely reduced by levee construction. Also, vernal pool habitats have been greatly reduced due to agricultural and urban land conversion. At the current rate of loss, these features are anticipated to be eliminated from the Central Valley by 2087 (Holland 2009b). Due to the significant land use conversion and development in the Central Valley, natural jurisdictional water features, including seasonal riverine, seasonal wetlands, and vernal pools, are extremely rare on a regional scale. Jurisdictional waters occur within and adjacent to the project footprint, and would be affected directly and indirectly by construction period activities and the project. However, through implementation of mitigation measures, as described in Section 3.7.7, Mitigation Measures, effects on jurisdictional waters would be avoided, where possible, or would be of negligible intensity for the regional context. Therefore, the effects of the HST project on jurisdictional waters would not be significant under NEPA.

- **Conservation areas:** Because the majority of the land in the Central Valley has been converted to agricultural uses (NRCS 2006) and the natural areas that remain are largely disturbed and fragmented, preservation of remaining natural lands is extremely important for the preservation of biological resources. Existing conservation lands, such as recovery plan areas, ecological reserves, and habitat conservation plan areas, support the preservation of remaining natural lands, and are therefore an important resource in the Central Valley. The use of the Allensworth Bypass Alternative, as opposed to the corresponding segment of the BNSF Alternative, would reduce impacts and result in no effect on the Allensworth Ecological Reserve. Potential effects of the HST project on these areas would be minimized through the implementation of mitigation measures, as described in Section 3.7.7, Mitigation Measures, resulting in impacts of negligible intensity in the regional context. Therefore, the effects of the HST project on conservation areas would not be significant under NEPA.

- **Protected trees:** The regional and contextual importance of protected trees in the Special-Status Plant Study Area varies based on the species of tree and its location. Native tree species and trees found in riparian areas are ecologically valuable because natural habitats and riparian areas have been greatly reduced in the Central Valley, and these trees, therefore, represent a rare resource for wildlife. However, the majority of protected trees present, besides those of unknown type, are landscape, ornamental, or nonnative trees, which are less ecologically significant because they do not provide natural habitat or are less likely to provide native species preservation value. Through the implementation of mitigation measures, as described in Section 3.7.7, Mitigation Measures, project construction and operation impacts would be of negligible intensity in the regional context. Therefore, the effects of the HST project on protected trees would not be significant under NEPA.

- **Wildlife movement corridors:** In many places in California, fragmentation of the landscape has reduced and isolated much of the remaining habitat available to native wildlife species (Haas 2000). Studies have shown that habitat connectivity is important in biodiversity conservation, particularly because of the role it plays in maintaining gene flow (Beier and Noss 1998), maintaining ecological processes (Bennett 1999), and reducing species extinction risk (Crooks et al. 2011). Current impediments to habitat connectivity and wildlife movement in the region of the HST project include, but are not limited to, agricultural lands, urban development, SR 43, and the BNSF Railway right-of-way. Because of the importance of movement corridors for special-status species (specifically, the San Joaquin kit fox, a keystone and umbrella species for other wildlife), the preservation of these corridors in the Habitat Study Area is extremely important (USFWS 1998). Project design elements would reduce effects of the project on wildlife movement corridors, and the implementation of mitigation measures as described in Section 3.7.7 would further lessen project and construction effects.
Since the release of the Revised DEIR/Supplemental DEIS, the USFWS has issued a Biological Opinion that states, “Based on the proposed project design [dedicated wildlife movement structures] and all of the conservation measures, the amount of incidental take anticipated is small relative to the range wide condition of the species. The project, as proposed, is not likely to restrict or preclude movement among San Joaquin kit fox populations. The protection of habitats within the permittee-responsible mitigation sites as identified in the 2012 Draft CMP will minimize the effect on the San Joaquin kit fox from incidental take resulting from permanent habitat loss. Permanent protection of these lands through conservation easements will provide beneficial effects for this species and contribute to its survival and recovery.”

The identification of the compensatory mitigation sites (as described in Section 3.7.7.4) allows for a closer evaluation of the benefits of the mitigation as it relates to wildlife movement. Because the potential compensatory mitigation sites are located in close proximity to the project, known wildlife corridors and linkages are located in areas identified in USFWS Recovery Plans (Upland Species of the San Joaquin Valley, and Vernal Pool), and are located in designated critical habitat for California tiger salamander and vernal pool branchiopod species; the preservation of these sites in perpetuity (or other sites located in close proximity to the project and within movement corridors), along with appropriate long-term management, will reduce the intensity of regional impacts on wildlife movement to moderate.

Therefore, the project design features, coupled with the compensatory mitigation, would reduce the effects on wildlife movement and therefore would not be a significant effect under NEPA.

3.7.9 CEQA Significance Conclusions

Table 3.7-27 provides a summary of the CEQA impacts, the associated mitigation measures, and the level of significance after mitigation. The table presents only the impacts that are significant under CEQA prior to mitigation. The determinations presented for each impact represent the impact of the entire Fresno to Bakersfield HST Section and not individual alignment alternatives. The following impacts are not included in Table 3.7-27 because these impacts would be less than significant under CEQA:

- BIO#2: Construction period impacts on special-status fish species (less than significant).
- BIO#3: Construction period impacts on Allensworth ER (no impact).
- BIO#3: Construction period impacts on habitat conservation plans (no impact).
- BIO#4: Construction period impacts on wildlife movement corridors (less than significant).
- BIO#6: Project impacts on special-status fish species (less than significant).
- BIO#3: Project impacts on habitat conservation plans (no impact).

Based on the incorporation of Project Design Features (e.g., dedicated wildlife movement structures), the contents of the USFWS Biological Opinion (USFWS 2013a), and the identification of the compensatory mitigation sites, the significance conclusion for wildlife movement after mitigation has been changed to less than significant. For more information see the discussion in Section 3.7.8, NEPA Impacts Summary.
Table 3.7-27
Summary of CEQA Impacts, Mitigation Measures, and Level of Significance after Mitigation

<table>
<thead>
<tr>
<th>Impact</th>
<th>Level of Significance before Mitigation</th>
<th>Mitigation Measure</th>
<th>Level of Significance after Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common Mitigation Measures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The following mitigation measures effectively mitigate impacts on multiple biological resources (e.g., special-status species and wildlife movement corridors). Common mitigation measures apply to many of the construction period and project impact categories listed below.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIO-MM#1. Designate Project Biologist(s), Regulatory Specialist (Waters), Project Botanist and Project Biological Monitor(s).</td>
<td>BIO-MM#2. Regulatory Agency Access.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIO-MM#3. Prepare and Implement a Worker Environmental Awareness Program (WEAP).</td>
<td>BIO-MM#4. Prepare and Implement a Weed Control Plan and Annual Vegetation Control Plan.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIO-MM#5. Prepare and Implement a Biological Resources Management Plan.</td>
<td>BIO-MM#6. Prepare and Implement a Restoration and Revegetation Plan.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIO-MM#7. Delineate Environmentally Sensitive Areas and Environmentally Restricted Areas (on plans and in-field).</td>
<td>BIO-MM#8. Wildlife Exclusion Fencing.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIO-MM#9. Equipment Staging Areas.</td>
<td>BIO-MM#10. Mono-Filament Netting.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIO-MM#11. Vehicle Traffic.</td>
<td>BIO-MM#12. Entrapment Prevention.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIO-MM#13. Work Stoppage.</td>
<td>BIO-MM#14. “Take” Notification and Reporting.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIO-MM#15. Post-Construction Compliance Reports.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special-Status Plants</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIO#1: Construction of the HST alternatives would directly or indirectly impact suitable habitat that has potential to support special-status plant species. Refer to Appendix 3.7-8, Attachment 1.</td>
<td>Significant</td>
<td>BIO-MM#16. Conduct Protocol-Level Preconstruction Surveys for Special-Status Plant Species and Special-Status Plant Communities.</td>
<td>Less than Significant</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BIO-MM#17. Prepare and Implement Plan for Salvage, Relocation, and/or Propagation of Special-Status Plant Species.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>BIO-MM#53. Compensate for Impacts on Special-Status Plant Species.</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.7-27
Summary of CEQA Impacts, Mitigation Measures, and Level of Significance after Mitigation

<table>
<thead>
<tr>
<th>Impact</th>
<th>Level of Significance before Mitigation</th>
<th>Mitigation Measure</th>
<th>Level of Significance after Mitigation</th>
</tr>
</thead>
</table>
| Special-Status Wildlife Species | Significant | AVR-MM#1b. Minimize Light Disturbance during Construction
BIO-MM#18. Conduct Preconstruction Sampling and Assessment for Vernal Pool Fauna.
BIO-MM#19. Seasonal Vernal Pool Work Restriction.
BIO-MM#20. Implement and Monitor Vernal Pool Protection.
BIO-MM#49. Monitor Construction Activities within Jurisdictional Waters.
BIO-MM#55. Compensate for Impacts on Valley Elderberry Longhorn Beetle.
BIO-MM#63. Compensate for Permanent and Temporary Impacts on Jurisdictional Waters.
BIO-MM#65. Offsite Habitat Restoration, Enhancement and Preservation. | Less than Significant |

*BIO#2: Construction of the HST alternatives would disturb suitable habitat that has potential to support special-status invertebrate species. Refer to Appendix 3.7-B, Attachment 2.
<table>
<thead>
<tr>
<th>Impact</th>
<th>Level of Significance before Mitigation</th>
<th>Mitigation Measure</th>
<th>Level of Significance after Mitigation</th>
</tr>
</thead>
</table>
| **BIO#2**: Construction of the HST alternatives would disturb the suitable habitat that has potential to support special-status reptiles and amphibian species. Refer to Appendix 3.7-B, Attachment 2. | Significant | **AVR-MM#1b.** Minimize Light Disturbance during Construction
BI O-MM#22. Conduct Preconstruction Surveys for Special-Status Reptile and Amphibian Species.
BI O-MM#23. Conduct Special-Status Reptile and Amphibian Monitoring, Avoidance, and Relocation.
BI O-MM#24. Conduct Protocol and Preconstruction Surveys for California Tiger Salamander.
BI O-MM#25. Implement Avoidance and Minimization Measures for California Tiger Salamander.
BI O-MM#26. Conduct Protocol-Level Surveys for Blunt-Nosed Leopard Lizard.
BI O-MM#27. Phased Preconstruction Surveys for Blunt-Nosed Leopard Lizard.
BI O-MM#28. Blunt-Nosed Leopard Lizard Avoidance.
BI O-MM#49. Monitor Construction Activities within Jurisdictional Waters.
BI O-MM#56. Compensate for Impacts on California Tiger Salamander.
BI O-MM#57. Compensate for Impacts on Blunt-Nosed Leopard Lizard, Tipton Kangaroo Rat, and Nelson's Antelope Squirrel.
BI O-MM#65. Offsite Habitat Restoration, Enhancement and Preservation. | Less than Significant |
<table>
<thead>
<tr>
<th>Impact</th>
<th>Level of Significance before Mitigation</th>
<th>Mitigation Measure</th>
<th>Level of Significance after Mitigation</th>
</tr>
</thead>
</table>
| **BIO#2:** Construction of the HST alternatives would disturb suitable habitat that has potential to support nesting special-status bird species (including raptors). Refer to Appendix 3.7-B, Attachment 2. | Significant | AVR-MM#1b. Minimize Light Disturbance during Construction
BI O-MM#29. Conduct Preconstruction Surveys and Delineate Active Nest Exclusion Areas for Other Breeding Birds.
BI O-MM#30. Conduct Preconstruction Surveys and Monitoring for Raptors.
BI O-MM#32. Conduct Protocol and Preconstruction Surveys for Swainson’s Hawks.
BI O-MM#33. Swainson’s Hawk Nest Avoidance and Monitoring.
BI O-MM#34. Monitor Removal of Nest Trees for Swainson’s Hawks.
BI O-MM#35. Conduct Protocol Surveys for Burrowing Owls.
BI O-MM#36. Burrowing Owl Avoidance and Minimization.
BI O-MM#38. Compensate for Loss of Burrowing Owl Active Burrows and Habitat.
BI O-MM#65. Offsite Habitat Restoration, Enhancement and Preservation. | Less than Significant |
| **BIO#2:** Construction of the HST alternatives would disturb suitable habitat that has the potential to support special-status mammal species. Refer to Appendix 3.7-B, Attachment 2. | Significant | BI O-MM#37. Conduct Surveys for Nelson’s Antelope Squirrel, Tipton Kangaroo Rat, Dulzura Pocket Mouse, and Tulare Grasshopper Mouse.
BI O-MM#38. Implement Avoidance and Minimization Measures for Nelson’s Antelope Squirrel, Tipton Kangaroo Rat, Dulzura Pocket Mouse, and Tulare Grasshopper Mouse.
BI O-MM#39. Implement Avoidance and Minimization Measures for Fresno Kangaroo Rat.
BI O-MM#40. Conduct Preconstruction Surveys for Special-Status Bat Species.
BI O-MM#41. Bat Avoidance and Relocation.
BI O-MM#42. Bat Exclusion and Deterrence.
BI O-MM#43. Conduct Preconstruction Surveys for American Badger and Ringtail.
BI O-MM#44. American Badger and Ringtail Avoidance.
BI O-MM#45. Conduct Preconstruction Surveys for San Joaquin Kit Fox.
BI O-MM#46. Minimize Impacts on San Joaquin Kit Fox.
BI O-MM#60. Compensate for Destruction of San Joaquin Kit Fox Habitat.
BI O-MM#65. Offsite Habitat Restoration, Enhancement and Preservation. | Less than Significant |
Table 3.7-27
Summary of CEQA Impacts, Mitigation Measures, and Level of Significance after Mitigation

<table>
<thead>
<tr>
<th>Impact</th>
<th>Level of Significance before Mitigation</th>
<th>Mitigation Measure</th>
<th>Level of Significance after Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>HABITATS OF CONCERN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special-Status Plant Communities</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **BIO#3:** Construction of the HST alternatives would disturb special-status plant communities, and riparian areas. | Significant | **BIO-MM#16.** Conduct Protocol-Level Preconstruction Surveys for Special-Status Plant Species and Special-Status Plant Communities.
BIO-MM#47. Restore Temporary Riparian Impacts.
BIO-MM#48. Restore Temporary Impacts on Jurisdictional Waters.
BIO-MM#49. Monitor Construction Activities within Jurisdictional Waters.
BIO-MM#61. Compensate for Permanent Riparian Impacts.
BIO-MM#62. Prepare and Implement a Site-Specific Comprehensive Mitigation and Monitoring Plan.
BIO-MM#63. Compensate for Permanent and Temporary Impacts on Jurisdictional Waters.
BIO-MM#65. Offsite Habitat Restoration, Enhancement and Preservation. | Less than Significant |
| **Jurisdictional Waters** | | | |
| **BIO#3:** Construction of the HST alternatives would have direct and indirect impacts on jurisdictional waters. | Significant | **BIO-MM#47.** Restore Temporary Riparian Impacts.
BIO-MM#48. Restore Temporary Impacts on Jurisdictional Waters.
BIO-MM#49. Monitor Construction Activities within Jurisdictional Waters.
BIO-MM#61. Compensate for Permanent Riparian Impacts.
BIO-MM#62. Prepare and Implement a Site-Specific Comprehensive Mitigation and Monitoring Plan.
BIO-MM#63. Compensate for Permanent and Temporary Impacts on Jurisdictional Waters.
BIO-MM#65. Offsite Habitat Restoration, Enhancement and Preservation. | Less than Significant |
| **Conservation Areas** | | | |
| **BIO#3:** Construction of the HST alternatives would disturb areas located in USFWS recovery plans. | Significant | **BIO-MM#46.** Minimize Impacts on San Joaquin Kit Fox.
BIO-MM#60. Compensate for Destruction of San Joaquin Kit Fox Habitat. | Less than Significant |
Table 3.7-27
Summary of CEQA Impacts, Mitigation Measures, and Level of Significance after Mitigation

<table>
<thead>
<tr>
<th>Impact</th>
<th>Level of Significance before Mitigation</th>
<th>Mitigation Measure</th>
<th>Level of Significance after Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protected Trees</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIO#3: Construction of the HST alternatives would disturb protected trees.</td>
<td>Significant</td>
<td>BIO-MM#50. Mitigation and Monitoring of Protected Trees. BIO-MM#64. Compensate for Impacts on Protected Trees. BIO-MM#65. Offsite Habitat Restoration, Enhancement and Preservation.</td>
<td>Less than Significant</td>
</tr>
<tr>
<td>PROJECT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special-Status Plant Species</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIO#5: Project impacts from the HST alternatives would permanently impact special-status plant species or suitable habitat that has potential to support these species. Refer to Appendix 3.7-B, Attachment 1.</td>
<td>Significant</td>
<td>BIO-MM#16. Conduct Protocol-Level Preconstruction Surveys for Special-Status Plant Species and Special-Status Plant Communities. BIO-MM#17. Prepare and Implement Plan for Salvage, Relocation, and/or Propagation of Special-Status Plant Species. BIO-MM#53. Compensate for Impacts on Special-Status Plant Species.</td>
<td>Less than Significant</td>
</tr>
<tr>
<td>Special-Status Wildlife Species</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIO#6: Project impacts from the HST alternatives would permanently impact suitable habitat that has the potential to support special-status invertebrate species. Refer to Appendix 3.7-B, Attachment 2.</td>
<td>Significant</td>
<td>BIO-MM#18. Conduct Preconstruction Sampling and Assessment for Vernal Pool Fauna. BIO-MM#19. Seasonal Vernal Pool Work Restriction. BIO-MM#20. Implement and Monitor Vernal Pool Protection. BIO-MM#21. Implement Avoidance and Minimization Measures for the Valley Elderberry Longhorn Beetle. BIO-MM#49. Monitor Construction Activities within Jurisdictional Waters. BIO-MM#54. Compensate for Impacts on Vernal Pool Fairy Shrimp and Vernal Pool Tadpole Shrimp. BIO-MM#55. Compensate for Impacts on Valley Elderberry Longhorn Beetle. BIO-MM#63. Compensate for Permanent and Temporary Impacts on Jurisdictional Waters. BIO-MM#65. Offsite Habitat Restoration, Enhancement and Preservation. N&V-MM#3. Implement Proposed California High-Speed Train Project Noise Mitigation Guidelines.</td>
<td>Less than Significant</td>
</tr>
</tbody>
</table>
Table 3.7-27
Summary of CEQA Impacts, Mitigation Measures, and Level of Significance after Mitigation

<table>
<thead>
<tr>
<th>Impact</th>
<th>Level of Significance before Mitigation</th>
<th>Mitigation Measure</th>
<th>Level of Significance after Mitigation</th>
</tr>
</thead>
</table>
| **BIO#6**: Project impacts from the HST alternatives would permanently impact suitable habitat that has the potential to support special-status reptiles and amphibian species. Refer to Appendix 3.7-B, Attachment 2. | Significant | **BIO-MM#22.** Conduct Preconstruction Surveys for Special-Status Reptile and Amphibian Species.
BIO-MM#23. Conduct Special-Status Reptile and Amphibian Monitoring, Avoidance, and Relocation.
BIO-MM#24. Conduct Protocol and Preconstruction Surveys for California Tiger Salamander.
BIO-MM#25. Implement Avoidance and Minimization Measures for California Tiger Salamander.
BIO-MM#26. Conduct Protocol-Level Surveys for Blunt-Nosed Leopard Lizard.
BIO-MM#27. Phased Preconstruction Surveys for Blunt-Nosed Leopard Lizard.
BIO-MM#28. Blunt-Nosed Leopard Lizard Avoidance.
BIO-MM#48. Restore Temporary Impacts on Jurisdictional Waters.
BIO-MM#49. Monitor Construction Activities within Jurisdictional Waters.
BIO-MM#56. Compensate for Impacts on California Tiger Salamander.
BIO-MM#57. Compensate for Impacts on Blunt-Nosed Leopard Lizard, Tipton Kangaroo Rat, and Nelson’s Antelope Squirrel.
BIO-MM#63. Compensate for Permanent and Temporary Impacts on Jurisdictional Waters.
BIO-MM#65. Offsite Habitat Restoration, Enhancement and Preservation.
N&V-MM#3. Implement Proposed California High-Speed Train Project Noise Mitigation Guidelines. | Less than Significant |
Table 3.7-27
Summary of CEQA Impacts, Mitigation Measures, and Level of Significance after Mitigation

<table>
<thead>
<tr>
<th>Impact</th>
<th>Level of Significance before Mitigation</th>
<th>Mitigation Measure</th>
<th>Level of Significance after Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO#6: Project impacts from the HST alternatives would permanently impact suitable habitat that has the potential to support special-status bird species (including raptors). Refer to Appendix 3.7-B, Attachment 2.</td>
<td>Significant</td>
<td>BIO-MM#29. Conduct Preconstruction Surveys and Delineate Active Nest Exclusion Areas for Other Breeding Birds. BIO-MM#30. Conduct Preconstruction Surveys and Monitoring for Raptors. BIO-MM#31. Bird Protection. BIO-MM#32. Conduct Protocol and Preconstruction Surveys for Swainson’s Hawks. BIO-MM#33. Swainson’s Hawk Nest Avoidance and Monitoring. BIO-MM#34. Monitor Removal of Nest Trees for Swainson’s Hawks. BIO-MM#35. Conduct Protocol Surveys for Burrowing Owls. BIO-MM#36. Burrowing Owl Avoidance and Minimization. BIO-MM#37. Compensate for Loss of Swainson’s Hawk Nesting Trees. BIO-MM#38. Compensate for Loss of Burrowing Owl Active Burrows and Habitat. BIO-MM#39. Offsite Habitat Restoration, Enhancement and Preservation. N&V-MM#3. Implement Proposed California High-Speed Train Project Noise Mitigation Guidelines.</td>
<td>Less than Significant</td>
</tr>
<tr>
<td>BIO#6: Project impacts from the HST alternatives would permanently impact suitable habitat that has the potential to support special-status mammal species. Refer to Appendix 3.7-B, Attachment 2.</td>
<td>Significant</td>
<td>BIO-MM#37. Conduct Surveys for Nelson’s Antelope Squirrel Tipton Kangaroo Rat, Dulzura Pocket Mouse, and Tulare Grasshopper Mouse. BIO-MM#38. Implement Avoidance and Minimization Measures for Nelson’s Antelope Squirrel, Tipton Kangaroo Rat, Dulzura Pocket Mouse, and Tulare Grasshopper Mouse. BIO-MM#39. Implement Avoidance and Minimization Measures for Fresno Kangaroo Rat. BIO-MM#40. Conduct Preconstruction Surveys for Special-Status Bat Species. BIO-MM#41. Bat Avoidance and Relocation. BIO-MM#42. Bat Exclusion and Deterrence. BIO-MM#43. Conduct Preconstruction Surveys for American Badger and Ringtail. BIO-MM#44. American Badger and Ringtail Avoidance. BIO-MM#45. Conduct Preconstruction Surveys for San Joaquin Kit Fox. BIO-MM#46. Minimize Impacts on San Joaquin Kit Fox. BIO-MM#47. Compensate for Destruction of San Joaquin Kit Fox Habitat. BIO-MM#48. Offsite Habitat Restoration, Enhancement and Preservation. N&V-MM#3. Implement Proposed California High-Speed Train Project Noise Mitigation Guidelines.</td>
<td>Less than Significant</td>
</tr>
</tbody>
</table>
Table 3.7-27
Summary of CEQA Impacts, Mitigation Measures, and Level of Significance after Mitigation

<table>
<thead>
<tr>
<th>Impact</th>
<th>Level of Significance before Mitigation</th>
<th>Mitigation Measure</th>
<th>Level of Significance after Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>HABITATS OF CONCERN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special-Status Plant Communities</td>
<td></td>
<td>BIO-MM#16. Conduct Protocol-Level Preconstruction Surveys for Special-Status Plant Species and Special-Status Plant Communities. BIO-MM#47. Restore Temporary Riparian Impacts. BIO-MM#48. Restore Temporary Impacts on Jurisdictional Waters. BIO-MM#49. Monitor Construction Activities within Jurisdictional Waters. BIO-MM#53. Compensate for Impacts on Special-Status Plant Species. BIO-MM#61. Compensate for Permanent Riparian Impacts. BIO-MM#62. Prepare and Implement a Site-Specific Comprehensive Mitigation and Monitoring Plan. BIO-MM#63. Compensate for Permanent and Temporary Impacts on Jurisdictional Waters. BIO-MM#65. Offsite Habitat Restoration, Enhancement and Preservation.</td>
<td>Less than Significant</td>
</tr>
<tr>
<td>BIO#7: Project impacts from the HST alternatives would permanently impact special-status plant communities, and riparian areas. Refer to Appendix 3.7-B, Attachment 3.</td>
<td>Significant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jurisdictional Waters</td>
<td></td>
<td>BIO-MM#47. Restore Temporary Riparian Impacts. BIO-MM#48. Restore Temporary Impacts on Jurisdictional Waters. BIO-MM#49. Monitor Construction Activities within Jurisdictional Waters. BIO-MM#61. Compensate for Permanent Riparian Impacts. BIO-MM#62. Prepare and Implement a Site-Specific Comprehensive Mitigation and Monitoring Plan. BIO-MM#63. Compensate for Permanent and Temporary Impacts on Jurisdictional Waters. BIO-MM#65. Offsite Habitat Restoration, Enhancement and Preservation.</td>
<td>Less than Significant</td>
</tr>
<tr>
<td>BIO#7: Project impacts from the HST alternatives would permanently affect jurisdictional waters. Refer to Appendix 3.7-B, Attachment 4.</td>
<td>Significant</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.7-27
Summary of CEQA Impacts, Mitigation Measures, and Level of Significance after Mitigation

<table>
<thead>
<tr>
<th>Impact</th>
<th>Level of Significance before Mitigation</th>
<th>Mitigation Measure</th>
<th>Level of Significance after Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conservation Areas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIO#7: Project impacts from the HST alternatives would disturb portions of recovery plans. Refer to Appendix 3.7-B, Attachment 5.</td>
<td>Significant</td>
<td>Construction and Project Mitigation Measures BIO-MM#16 through BIO-MM#65.</td>
<td>Less than Significant</td>
</tr>
<tr>
<td>BIO#7: Project impacts from the HST alternatives would disturb portions of the Allensworth Ecological Reserve. Refer to Appendix 3.7-B, Attachment 5.</td>
<td>Significant (When Allensworth Bypass Alternative is used there is no impact under CEQA)</td>
<td>Construction and Project Mitigation Measures BIO-MM#16 through BIO-MM#65.</td>
<td>Less than Significant</td>
</tr>
<tr>
<td>Protected Trees</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| BIO#7: Project impacts from the HST alternatives would permanently affect protected trees. Refer to Appendix 3.7-B, Attachment 6. | Significant | BIO-MM#50. Mitigation and Monitoring of Protected Trees.
BIO-MM#64. Compensate for Impacts on Protected Trees.
BIO-MM#65. Offsite Habitat Restoration, Enhancement and Preservation. | Less than Significant |
Table 3.7-27
Summary of CEQA Impacts, Mitigation Measures, and Level of Significance after Mitigation

<table>
<thead>
<tr>
<th>Impact</th>
<th>Level of Significance before Mitigation</th>
<th>Mitigation Measure</th>
<th>Level of Significance after Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wildlife Movement Corridors</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **BIO#8**: Project impacts from the HST alternatives would permanently reduce the functionality of wildlife movement corridors and habitat linkages. | Significant | **BIO-MM#51.** Install Flashing or Slats within Security Fencing.
BIO-MM#52. Construction in Wildlife Movement Corridors.
BIO-MM#54. Compensate for Impacts on Vernal Pool Fairy Shrimp and Vernal Pool Tadpole Shrimp.
BIO-MM#55. Compensate for Impacts on Valley Elderberry Longhorn Beetle.
BIO-MM#56. Compensate for Impacts on California Tiger Salamander.
BIO-MM#57. Compensate for Impacts on Blunt-Nosed Leopard Lizard, Tipton Kangaroo Rat, and Nelson’s Antelope Squirrel.
BIO-MM#58. Compensate for Loss of Swainson’s Hawk Nesting Trees.
BIO-MM#59. Compensate for Loss of Burrowing Owl Active Burrows and Habitat.
BIO-MM#60. Compensate for Destruction of San Joaquin Kit Fox Habitat. | Less than Significant |

HMF Alternatives			
The HMF alternatives would result in project impacts on:			
BIO#2 and #6: special-status wildlife species	Significant (all HMF alternatives)	**Construction and Project Mitigation Measures** BIO-MM#18 through BIO-MM#49, and BIO-MM#51 through BIO-MM#61, BIO-MM#63, and BIO-MM#65.	Less than Significant
BIO#3 and #7: jurisdictional waters	Significant (Fresno Works-Fresno, Kings County-Hanford, KCOG-Wasco, KCOG-Shafter East)	**BIO-MM#47.** Restore Temporary Riparian Impacts.	
BIO-MM#48. Restore Temporary Impacts on Jurisdictional Waters.
BIO-MM#49. Monitor Construction Activities within Jurisdictional Waters.
BIO-MM#61. Compensate for Permanent Riparian Impacts.
BIO-MM#62. Prepare and Implement a Site-Specific Comprehensive Mitigation and Monitoring Plan.
BIO-MM#63. Compensate for Permanent and Temporary Impacts on Jurisdictional Waters.
BIO-MM#65. Offsite Habitat Restoration, Enhancement and Preservation. | Less than Significant (Fresno Works-Fresno, Kings County-Hanford, KCOG-Wasco, KCOG-Shafter East) |
Table 3.7-27
Summary of CEQA Impacts, Mitigation Measures, and Level of Significance after Mitigation

<table>
<thead>
<tr>
<th>Impact</th>
<th>Level of Significance before Mitigation</th>
<th>Mitigation Measure</th>
<th>Level of Significance after Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO#3 and #7: recovery plans</td>
<td>Significant (KCOG-Wasco HMF)</td>
<td>Construction and Project Mitigation Measures BIO-MM#16 through BIO-MM#65.</td>
<td>Less than Significant (KCOG-Wasco)</td>
</tr>
<tr>
<td>BIO#3 and #7: protected trees</td>
<td>Significant (Fresno Works-Fresno)</td>
<td>BIO-MM#50. Mitigation and Monitoring of Protected Trees. BIO-MM#64. Compensate for Impacts on Protected Trees. BIO-MM#65. Offsite Habitat Restoration, Enhancement and Preservation.</td>
<td>Less than Significant (Fresno Works-Fresno)</td>
</tr>
</tbody>
</table>

Station Alternatives

The station alternatives would result in project impacts on:

<table>
<thead>
<tr>
<th>BIO# 2 and #6: special-status wildlife species</th>
<th>Significant (Kings/Tulare- West)</th>
<th>Construction and Project Mitigation Measures BIO-MM#18 through BIO-MM#49, and BIO-MM#54 through BIO-MM#63, and BIO-MM#65.</th>
<th>Less than Significant (Kings/Tulare-West)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO#3 and #7: recovery plans</td>
<td>Significant (Bakersfield stations [North, South and Hybrid])</td>
<td>Construction and Project Mitigation Measures BIO-MM#16 through BIO-MM#65.</td>
<td>Less than Significant (Bakersfield stations [North, South and Hybrid])</td>
</tr>
</tbody>
</table>
Table 3.7-27
Summary of CEQA Impacts, Mitigation Measures, and Level of Significance after Mitigation

<table>
<thead>
<tr>
<th>Impact</th>
<th>Level of Significance before Mitigation</th>
<th>Mitigation Measure</th>
<th>Level of Significance after Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO#3 and #7: protected trees</td>
<td>Significant (Fresno station [Mariposa] and Bakersfield stations [North, South and Hybrid])</td>
<td>BIO-MM#50. Mitigation and Monitoring of Protected Trees. BIO-MM#64. Compensate for Impacts on Protected Trees. BIO-MM#65. Offsite Habitat Restoration, Enhancement and Preservation.</td>
<td>Less than Significant (Fresno station [Mariposa] and Bakersfield stations [North, South and Hybrid])</td>
</tr>
</tbody>
</table>

Notes:
* Determinations presented for each impact represent the impact of the entire Fresno to Bakersfield Section and not individual alignment alternatives

HMF=Heavy Maintenance Facility
Fresno= Fresno Works–Fresno HMF
Kings=Kings County–Hanford HMF
KCOG-Wasco= Kern Council of Governments–Wasco HMF
KCOG-Shafter-West= Kern Council of Governments–Shafter-West HMF
KCOG-Shafter-East = Kern Council of Governments–Shafter-East HMF