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1.0 Introduction 

Forecasts of California high-speed rail (HSR) ridership and revenue are estimated 
using a travel demand model.  The Business Plan Model – Version 3 (BPM-V3) 
travel demand model predicts, for a specified forecast year, the number of annual 
trips made by households residing in California, where these trips are going 
within California, and the mode of transportation (i.e., auto, air, conventional rail, 
or HSR) used to make these trips.  In order to predict this travel behavior, the 
model takes in as input predictions about what households and the transportation 
system will look like for each forecast year.  However, there is uncertainty in what 
the future will actually hold for these input values (e.g. auto operating cost), as 
well as how travel patterns and people’s choices will evolve over time.  Thus, to 
fully understand the uncertainty in the HSR forecasts of revenue and ridership, 
the full range of probable values for these variables should be analyzed. 

The purpose of the risk analysis is to incorporate the uncertainty associated with 
model inputs and assumed travel behavior into the 2016 Draft Business Plan (BP) 
HSR ridership and revenue forecasting process.  A risk analysis approach was 
developed that expresses forecast results as probabilities of achieving different 
outcome levels.  This approach builds on and expands the previous risk analysis 
that was performed for the 2014 Business Plan (BP).  In order to develop a full 
range of possible ridership and revenue, dozens of full model runs were used to 
estimate relationships between forecast revenue and ridership and select input 
variables (This created a “meta-model.”).  The approach began by identifying 
potential risk factors that could impact ridership and revenue forecasts (e.g., 
potential changes in auto operating costs or the impact of new technologies such 
as autonomous vehicles).  These factors were estimated using model variables, and 
the variables were systematically narrowed to the set of inputs that would have 
the highest combination of uncertainty and impact on the forecasts.  The “meta-
model” was coupled with researched distributions of the model inputs and used 
in a Monte Carlo simulation to develop 50,000 unique forecasts of revenue and 
ridership.  From this simulation, probability distributions of total revenue and 
ridership were estimated. 

This methodology is similar to the methodology employed for the 2014 BP.  It was 
refined and enhanced by: 

 Refining the process for identifying the model inputs for inclusion in the 
analysis by developing a systematic and transparent methodology; 

 Incorporating more model inputs and subcomponents within the model 
inputs, tailored to each forecast year and implementation step in the analysis, 
so that the exact uncertainty in each forecast can be examined; and 

 Using a two-step analysis process to test interaction effects and to ensure that 
the full model runs replicated the BPM-V3 model for all levels of input values. 
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1.1 OVERVIEW OF THE RISK ANALYSIS APPROACH 
An eight-step risk analysis approach was employed to forecast revenue and 
ridership for the 2016 Draft BP, as shown in Figure 1.1. 

Figure 1.1. Eight-Step Risk Analysis Approach 

 

 

 

The steps to identify the model assumptions are described below. 

Step 1.  Develop a list of possible risk factors to be considered for the 
revenue and ridership risk analysis 

 Risk factors are defined as any circumstance, event, or influence that could 
result in the HSR revenue and ridership deviating from its forecasted value; 

 A panel of experts was used to develop a set of potential risk factors that could 
impact future HSR ridership and revenue; and 

 The identified risk factors differed between forecast years. 

Step 2.  Identify risk variables for each risk factor 

 Risk variables are actual variables and constants that can be adjusted in the 
BPM-V3.  As an example, auto operating cost (i.e., cost, in dollars, per vehicle 
mile driven) is a risk variable that can be adjusted in the model.  To address 
the possibility that fuel cost and fuel efficiency may be higher or lower than 
predicted, auto operating cost may be increased or reduced in the risk analysis 
to test how these two risk variables affect ridership and revenue. 

 The risk variables have been chosen to represent one or more risk factors 
identified in Step 1. 
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Step 3.  Narrow risk variables to key variables for inclusion within each 
forecast year of analysis 

 Sensitivity runs of the BPM-V3 were performed for each risk variable that 
allowed for a quantitative comparison of the impacts of each risk variable on 
ridership and revenue; and 

 Based on the range and known sensitivity of the risk variables under 
consideration, a final set of 10 risk variables was selected for inclusion for each 
forecast year. 

Steps 4 and 5.  Develop a range and distribution for each risk variable 
under consideration 

 The uncertainty associated with each risk variable was quantified by assigning 
a range and distribution for each variable.  For example, based on the research 
on each risk factor affecting auto operating cost, such as fuel cost and fuel 
efficiency, auto operating cost in year 2025 is predicted to range from $0.15 per 
mile to $0.31 per mile, with a most likely value of $0.20 per mile. 

 For each risk variable, the minimum, most likely, and maximum values for 
each forecast year were developed based on currently available research and 
analysis. 

 The shape of the distribution for each variable determined the likelihood of the 
variable’s value, within the set range, under random sampling.  For example, 
it is very unlikely that auto operating cost will be the minimum value of $0.15 
per mile or the maximum value of $0.31 per mile, but very likely it will be close 
to $0.20 per mile.  The auto operating cost distribution is defined such that the 
most likely value will be chosen at a much higher rate than the extreme values, 
and thus the simulated model runs will be more representative of potential 
future outcomes. 

Steps 6 and 7.  Run the BPM-V3 using a defined set of risk variable levels 
to obtain data points for estimation of two sets of regression models (i.e., 
meta-models) that regresses the 10 risk variables on either HSR revenue or 
ridership 

 The set of BPM-V3 specified model runs were developed to: 

– Test for the presence of two variable interaction effects, 

– Estimate nonlinearity of model variables, 

– Adequately capture the boundaries of the solution space, and 

– Ensure that data points do a good job of representing the interior of the 
solution space. 
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Step 8.  Perform a Monte Carlo simulation by running the regression 
model 50,000 times with varying levels of the input variables based on the 
distributions assigned to the variables 

 The simulation results in probability distributions of HSR revenue and 
ridership. 

 The results of the simulation were analyzed to determine the relative 
contribution of each risk factor on revenue and ridership. 

Each step in the risk analysis required thorough evaluation to ensure key risk 
factors were understood and addressed appropriately.  The rest of this technical 
memorandum is divided into five sections that provide insight into the steps taken 
to produce the simulation results: 

 Section 2.0.  Identification of Risk Variables (Steps 1 to 3); 

 Section 3.0.  Development of Risk Variable Ranges and Distributions 
(Steps 4 to 5); 

 Section 4.0.  Risk Analysis implementation (Steps 6 to 8); and 

 Appendices A to J. 
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2.0 Identification of Risk 
Variables 

This section details the steps taken to identify the risk variables included in the 
risk analysis, as shown in Figure 2.1. 

Figure 2.1 Eight-Step Risk Analysis Approach:  Identify Risk Variables (Steps 1 to 3) 

 

 

To develop a set of potential risk factors (Step 1), Cambridge Systematics, Inc. (CS) 
started by holding a series of meetings among Rail Delivery Partner (RDP) and 
Authority staff to brainstorm and identify potential risks that could impact 
ridership and revenue forecasts.  The meetings sought to answer the following 
question:  What real-world risks could impact ridership and revenue in years 2025, 
2029, and 2040?  These forecast years were chosen based on the HSR-phased 
implementation analyzed for the 2016 Draft Business Plan, which is outlined in 
Table 2.1.  As a result, the list of risk factors identified differed depending on the 
operating plan and forecast year under consideration.  For example, the 
uncertainty and impact of HSR bus connections to actual HSR service are a concern 
for earlier years, while the likelihood of significant autonomous vehicle use 
affecting HSR ridership is not likely until 2040. 

1. Identify risk 
factors

2.  Determine 
risk variables

3.  Narrow 
down risk 
variables to 
key variables

4.  Develop 
range for 
each risk 
variable

5.  Develop 
distributions 
and 
correlations 
for each 
variable

6. Run the 
BPM-V3 
model to 
obtain data 
points

7.  Create a 
regression 
model (i.e. 
meta-model)

8.  Perform 
Monte Carlo 
simulation 
based on 
regression 
model

Develop Risk Variable Ranges 
and Distributions 

Identify Risk Variables Implement Risk Analysis 



Draft 2016 California High-Speed Rail Business Plan Ridership and Revenue Risk Analysis 

2-2  Cambridge Systematics, Inc. 

Table 2.1 Description of each Phase of the HSR System 

Operating 
Phase Year 

High-Speed 
Rail Segment Frequency of Service 

HSR Bus and Conventional 
Rail Connections 

Silicon Valley 
to Central 
Valley Line 
(VtoV) 

2025 San Jose to 
North of 
Bakersfield 

2 trains per hour 
during the peak period 
and 1 train per hour 
during the off-peak 
period 

Includes Caltrain connections 
between San Jose and 
San Francisco, bus connections 
between North of Bakersfield and 
Los Angeles and rail and bus 
connections between Fresno and 
Sacramento 

Phase 1 
(PH1) 

2029 & 
2040 

San Francisco 
and Merced to 
Los Angeles 
and Anaheim 

Up to 8 trains per hour 
(from all destinations) 
during the peak period 
and 5 trains per hour 
during the off-peak 
period 

Includes rail and bus connections 
from Merced to Sacramento and 
rail connections in Southern 
California 

 

This list generated was used to identify risk variables (i.e., assumptions built into 
the BPM-V3 model) that could represent each risk factor (Step 2).  The risk 
variables identified for each risk factor were determined by answering the 
following questions:  What model inputs and variables drive these risks, and how 
do we account for these risks in the model?  Sensitivity runs of the BPM-V3 model 
were run for each risk variable that allowed for a quantitative comparison of the 
impacts of each risk variable on ridership and revenue.  Based on this sensitivity 
analysis, the risk variables that were determined to have the greatest effect on HSR 
ridership and revenue and the highest potential uncertainty for each forecast year 
were selected for inclusion (Step 3).  A set of 10 risk variables was included in the 
risk analysis for each forecast year, as shown in Table 2.2.  This table also 
documents the risk factors that are represented by each risk variable.  Appendix A 
of this technical memorandum gives more detail, for each included risk variable, 
the reason for considering the model variable, the risk factors represented by the 
variable, and the sensitivity results and quantitative reasoning for including the 
variable.  The appendix also highlights the list of risk analysis variables that were 
considered, but eventually excluded from the analysis. 
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Table 2.2 Variables Included in Risk Analysis for Each Analysis Year 

Number Risk Variable Reasons for Considering Model Variable and Risk Factors Represented 

1 Business HSR Mode Choice 
Constant 

The mode constants capture the unexplained variation in traveler mode choices after system variables and 
demographics are taken into account.  Unexplained variation may include factors, such as comfort aboard 
trains, opinions regarding HSR, need for a car at the destination, level of familiarity with HSR, etc. 

2 Commute HSR Mode Choice 
Constant 

3 Recreation/Other HSR Mode Choice 
Constant 

4 Business/Commute Trip Frequency 
Constant 

The trip frequency constants capture the unexplained variation in the number of long-distance trips that 
travelers will take after accounting for household demographics and the accessibility of available 
destinations.  Also, risks associated with the state of the economy are accounted for within the trip 
frequency constant risk variable. 

5 Recreation/Other Trip Frequency 
Constant 

6 Auto Operating Costs This variable reflects the inherent risks in forecasting future:  fuel costs, fuel efficiencies, adoption of 
alternative fuels/electric vehicles, maintenance costs, changes in gas taxes, potential impacts of cap and 
trade on fuel costs, market penetration of autonomous connected vehicles, and higher shares of “shared 
use” vehicles. 

7 HSR Fares A number of issues could affect actual fares charged to travelers, especially as the system is being opened:  
institution of discount/premium fares (advance purchase, peak/off-peak, first/second class seating); 
adjustments needed to respond to changing auto operating costs or air fares; yield management strategies; 
etc. 

8 HSR Frequency of Service With final service plans expected to be developed by a private operator that has not been brought on board 
yet, there is uncertainty around the amount of service that will be provided based on the markets and 
strategies that the operator may employ. 

9 
(Year 2025) 

Availability and Frequency of Service 
of Conventional Rail and HSR Buses 
that connect with HSR 

Access to and egress from the system includes connections with both conventional rail services and HSR 
buses (as well as many other modes).  Levels of conventional rail service are assumed based on the State 
Rail Plan, but there is some uncertainty around the availability of the exact amount of conventional rail 
service.  Similarly, the amount of connecting bus service could be different than currently forecasted.  
These connections are most critical in the early years of the program when the high-speed rail system does 
not yet connect the whole State. 

9 
(Year 2029) 

Airfares Airfares change and fluctuate over time.  Some possible reasons that airlines may change airfares from 
currently forecasted levels include changes in fuel or personnel costs or airport landing fees; changes in 
equipment or efficiency, such as NextGen technology; competitive response to HSR to maintain air market 
shares; acceptance of HSR as a replacement for inefficient; short-haul air service; etc. 
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Number Risk Variable Reasons for Considering Model Variable and Risk Factors Represented 

10 
(Year 2025 
and Year 
2029) 

Coefficient on Transit Access-Egress 
Time/Auto Distance Variable 

Between some regions in California, especially in the Silicon Valley to Central Valley line scenario, 
individuals who wish to travel primarily by transit to reach their destination must transfer from an HSR bus 
or conventional rail system before or after traveling on HSR.  International experience has shown that there 
is uncertainty around how the need to make these transfers affects overall HSR ridership.  The model 
includes a variable that makes HSR less attractive for trips that require a long access or egress trip in 
relation to the time spent on HSR (or another public mode such as conventional rail or air), and the variation 
in this variable was used as a way to estimate the uncertainty around the effect of these transfers on HSR 
ridership and revenue. 

9 
(Year 2040) 

Number and Distribution of 
Households (HH) throughout the 
State 

The forecasted number of statewide HHs can fluctuate for a variety of reasons, such as inherent uncertainty 
with population forecasts; national and statewide economic cycles; impacts of natural disasters, such as 
continuing draught; changes in U.S. immigration policy; etc.  The uncertainty of population forecasts and the 
divergence between different forecasts increase the further out the forecasts make predictions.  Based on a 
review of nine forecasts for 2020, the differences in predicted California population between the lowest and 
highest forecasts were only 840,000, while the differences for 2040 were 2.4 million. 

10 
(Year 2040) 

Auto Travel Time The introduction of autonomous vehicles is represented by decreases in auto travel times included within 
the model. 
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3.0 Development of Risk Variable 
Ranges and Distributions 

To conduct the risk analysis, the uncertainty surrounding each risk variable must 
be quantified by assigning a range and distribution for each variable.  As shown 
in Figure 3.1, determining the ranges of the risk variables corresponds to Step 4, 
and developing the distributions corresponds to Step 5 of the risk analysis 
approach. 

Figure 3.1 Eight-Step Risk Analysis Approach:  Develop Risk Variable Ranges 
and Distributions (Steps 4 to 5) 

 

 

To perform the risk analysis, a range of possible values for each risk variable has 
to be established in order to quantify the uncertainty related to that variable.  The 
absolute minimum and absolute maximum value of the variable sets the range of 
the variable’s forecasted value, while the most likely represents the peak of the 
variable’s distribution.  For each risk variable, the absolute minimum, most likely, 
and absolute maximum values were driven by independent research and analysis. 

A distribution around the minimum, most likely, and maximum values of each 
risk variable was determined based on the characteristics of these three points.  
The shape of the distribution determines the likelihood of the variable’s value, 
within the set range, under random sampling.  The most likely value has the 
greatest likelihood of occurring within the distribution.  The shape of the 
distribution can be triangular, PERT, uniform, or another form.  PERT 
distributions were used for variables where there are significant tails based on the 
values assumed for the minimum and maximum (i.e., the minimum and 
maximum are extreme values).  A Shape = 4 PERT distribution was assumed to be 
standard with a higher Shape used for Auto Operating Costs, because the 
maximum and minimum involve several independent downside or upside events 
taking place at the same time, which results in a highly unlikely event (and longer 
tails).  Triangular distributions were used where there is less information about 
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the exact shape, but values around the most likely are more likely to occur than 
the values closer to the minimum and maximum (though not to the same extreme 
as for the PERT distributions).  Uniform distributions were used where there is 
high uncertainty regarding the forecast values for the risk variable.  Figure 3.2 
illustrates the shapes of the different distributions used with the risk analysis. 

Figure 3.2 Shapes of the Distributions Used in the Risk Analysis 

 

 

The following sections identify the ranges of values and distribution for each risk 
variable and summarize the research and methodology for developing the 
absolute minimum, most likely, and absolute maximum value. 

3.1 HSR CONSTANT 
The HSR constant for each of the four trip purposes (i.e., business, commute, 
recreation, and other) is composed of two components:  1) unexplained variation, 
and 2) terminal and wait time.  The unexplained variation component represents 
the desirability to choose HSR that is not captured directly by the system variables 
(e.g., travel time, cost, etc.) included in the model.  Terminal time is the out-of-
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vehicle time spent traveling from the point of departure from the access mode to 
the train platform.  Wait time is the out-of-vehicle time spent waiting on the 
platform for the train to arrive and the time spent waiting for the train to leave the 
platform once boarded.  For all forecast years, the range for the HSR constant was 
defined as: 

 Minimum.  At the very worst case, HSR will be perceived as an equivalent 
mode to Conventional Rail (CVR), but terminal + wait time will be 45 minutes; 

 Most Likely.  Calibrated HSR constant with terminal + wait time of 
25 minutes; and 

 Maximum.  Assumes unexplained variation is symmetrical, but terminal + 
wait time will be 15 minutes. 

For BPM-V3 runs, terminal and wait time are included with the unexplained 
variation within the HSR constant.  For Monte Carlo risk analysis, each component 
of the HSR constant is considered as a separate risk variable with completely 
independent distributions (i.e., the unexplained variation uses a PERT distribution 
while the terminal/wait time uses a triangular distribution).  The former allows 
for estimation of a single regression model parameter, and does not require an 
additional risk variable in the experimental design framework.  The latter allows 
for an understanding of the terminal/wait time’s effect on ridership and revenue 
uncertainty independent from the HSR constant’s effect on ridership and revenue 
uncertainty since the two variables do not necessarily move together.  More 
information on the development of the range and distribution of the components 
of the HSR constant are detailed in Appendix B. 

3.2 TRIP FREQUENCY CONSTANT 
The trip frequency constants include the unexplained variation in the propensity 
of households to make long-distance trips within California.  Within the risk 
analysis, variation in the trip frequency constants (i.e., business/commute and 
recreation/other) also is developed to reflect the effect of the state of the economy 
on the proclivity of households to make trips.  While “the economy” is an 
overarching risk that affects many different decisions regarding travel, one of the 
most direct and principal impacts on HSR ridership and revenue is whether a 
long-distance trip is even made.  The state of the economy affects household 
income and employment levels; and the level of these variables directly affects trip 
frequency rates within the model (i.e., people who are out of work or have reduced 
income due to a recession make fewer long-distance trips).  Instead of including 
these variables directly as a risk variable in the risk analysis model to account for 
changes in the state of the economy, the effects of these risk variables on trip 
frequency levels are accounted for within the trip frequency constant risk variable. 

The unexplained variation range is based on the range seen in forecasted annual 
long-distance trip rates produced by the model.  The most likely value for each 
forecast year is the calibrated constant.  The minimum value of the trip frequency 
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constants is specified such that for year 2040, the trip frequency constants produce 
average trip rates equal to the 2010 rates by trip purpose long-term trends show 
people’s propensity for making long-distance trips increasing over time).  For the 
maximum value, the trip frequency constant is specified to mirror the deviations 
from the calibrated constants for the minimum values (i.e., symmetry of the 
constant offsets are assumed). 

The range of constant offsets for the Economic Cycles provides proxies for the 
actual economic-cycle risk variables being considered.  This approach provides a 
method for specifying a continuous range of outcomes rather than developing 
multiple input socioeconomic datasets.  The economic-cycle range was developed 
by calculating the implied trip rates based on changes in the number of workers 
and income levels from the following scenarios: 

 Minimum.  Based on HSR implied trip rate decrease resulting from a three 
percent per year decrease in employment from the low-growth scenario for 
three years preceding the forecast year.  The direct impact of the low economic 
cycle on trip frequency is determined by changing the distributions of 
households by number of workers and households by income group to reflect 
the three percent per year decrease in employment. 

 Most likely.  Resulting trip rates obtained using calibrated trip frequency 
constants. 

 Maximum.  Based on HSR implied trip rate increase resulting from a three-
percent per year increase in employment from the high-growth scenario for 
five years preceding the forecast year.  The direct impact of the high economic 
cycle on trip frequency is determined by changing the distributions of 
households by number of workers and households by income group to reflect 
the three percent per year increase in employment. 

The offsets must be combined to represent the full range of possible outcomes for 
the development of the risk analysis regression equations.  The constant offsets for 
the Unexplained Variation and Economic Cycle are added together, and the 
implied ranges of annual long-distance round trips per capita were estimated as 
shown in Table 3.1. 
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Table 3.1 Ranges of Implied Annual Round Trips per Capita for Full Model 
Runs Based on Trip Frequency Constant Offsets 

Model 
Year Purpose 

Implied Annual Long-Distance Round Trips  
per Capita After Applying Offsets 

Minimum Most Likely Maximum 

2025 Business/Commute 1.30 2.16 3.35 

Recreation/Other 4.76 5.76 6.84 

Total 6.06 7.92 10.19 

2029 Business/Commute 1.37 2.20 3.62 

Recreation/Other 4.84 5.85 7.13 

Total 6.21 8.05 10.75 

2040 Business/Commute 1.45 2.44 3.97 

Recreation/Other 5.06 6.22 7.54 

Total  6.51 8.66 11.51 

 

For Monte Carlo risk analysis, each component of the trip frequency constant is 
considered as a separate risk variable with completely independent distributions 
(i.e., 0 percent correlation).  The unexplained variation uses a PERT distribution, 
while the economic cycle uses a triangular distribution.  A 50-percent correlation 
is assumed between the business/commute and recreation/other risk components 
for unexplained variation, since there is likely to be some relationship (though not 
perfect correlation) in changes to overall trip-making for different purposes.  
Perfect correlation is assumed between economic-cycle risk components for 
business/commute and recreation/other purposes.  More information on the 
development of the range and distribution of the trip frequency constant 
components is detailed in Appendix C. 

3.3 AUTO OPERATING COST 
The auto operating cost for year 2025 and 2029 is assumed to be associated only 
with privately owned nonautonomous vehicles.  Auto operating cost is calculated 
from the following components: 

1. Retail fuel prices in California, which are projected using The U.S. Energy 
Information Administration (EIA) forecasts with an assumption that 
California prices are 11 percent higher than the National average (based on 
consistent patterns in past trends). 
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2. Additional fees and charges based on two scenarios: 

a. Cap and Trade implementation (i.e., 0 to 19 percent impact on retail fuel 
prices)1; and 

b. Potential increase in Federal excise tax. 

3. Fuel economy of the entire “on the road” fleet, calculated from the EIA. 

4. Nonfuel costs, which are obtained from the Bureau of Transportation Statistics. 

More information on the development of each of these components can be found 
in Appendix D.  The minimum, most likely, and maximum were set based on the 
combined impacts of these components.  For example, the minimum combines the 
lowest EIA projection with the least impact from Cap and Trade, no increase in 
Federal taxes, high fuel efficiency, and low nonfuel costs.  This approach is 
reflected in the following formulas, which were used to calculate the minimum, 
most likely, and maximum auto operating cost: 

Minimum Auto Operating Cost = ((Low CA Gas Price + No C&T Impact + No Increase 
in Federal Gas Tax)/High Fuel Efficiency) + Low Nonfuel Operating Costs 

Most Likely Auto Operating Cost = ((Most Likely CA Gas Price + Avg (C&T No 
Impact, C&T High Impact) + No Increase in Federal Gas Tax)/Most Likely Fuel 

Efficiency) + Most Likely Nonfuel Operating Costs 

High Auto Operating Cost = ((High CA Gas Price + C&T High Impact) + Increase in 
Federal Gas Tax)/Low Fuel Efficiency) + High Nonfuel Operating Costs 

Table 3.2 gives the auto operating cost component values and the resulting 
minimum, most likely, and maximum auto operating cost for each forecast year.  
Since auto operating cost comprises individual components that each has 
minimum and maximum values (as described above), auto operating costs utilize 
a Shape = 5 PERT distribution.  This distribution has somewhat longer tails since 
the very low or high end of the range has to have each of the individual 
components end up on the low or high end, which is a very unlikely occurrence. 

                                                      

1 The exact impact of Cap and Trade on fuel prices is unknown and could change over 
time based on the industry response to reduce emissions.  The California Air Resources 
Board estimated in 2010 that gasoline price changes in 2020 could range between 
4 percent and 19 percent due to Cap and Trade rules 
(http://www.arb.ca.gov/regact/2010/capandtrade10/capv4appn.pdf).  The minimum 
assumption assumes that Cap and Trade would not result in an increase in gas prices. 

http://www.arb.ca.gov/regact/2010/capandtrade10/capv4appn.pdf
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Table 3.2 Range of Auto Operating Cost for each Forecast Year by Auto 
Operating Cost Component 
2015 Dollars 

 Minimum Most Likely Maximum 

2025 Auto Operating Cost ($/mile) $0.15 $0.20 $0.31 

California Gas Price (CA Gas Price) $2.78 $3.41 $5.28 

Cap and Trade (C & T Impact) $0.00 $0.32 $1.00 

Increase in Federal Gas Tax $0.00 $0.00 $0.12 

Fuel Efficiency (mpg) 29.4 28.5 28.2 

Total Fuel Operating Cost ($/mile) $0.09 $0.13 $0.23 

Nonfuel Operating Cost ($/mile) $0.05 $0.06 $0.08 

2029 Auto Operating Cost ($/mile) $0.14 $0.19 $0.30 

California Gas Price (CA Gas Price) $2.83 $3.63 $5.73 

Cap and Trade (C&T Impact) $0.00 $0.35 $1.09 

Increase in Federal Gas Tax $0.00 $0.00 $0.12 

Fuel Efficiency (mpg) 32.7 31.6 31.2 

Total Fuel Operating Cost ($/mile) $0.09 $0.13 $0.22 

Nonfuel Operating Cost ($/mile) $0.05 $0.06 $0.08 

2040 Auto Operating Cost ($/mile)a $0.13 $0.19 $0.32 

California Gas Price (CA Gas Price) $3.00 $4.51 $7.32 

Cap and Trade (C & T Impact) $0.00 $0.43 $1.39 

Increase in Federal Gas Tax $0.00 $0.00 $0.12 

Fuel Efficiency (mpg) 38.6 37 36.1 

Total Fuel Operating Cost ($/mile) $0.08 $0.13 $0.24 

Nonfuel Operating Cost ($/mile) $0.05 $0.06 $0.08 

a The 2040 auto operating costs presented in the table do not include adjustments for autonomous and 
shared-use vehicles.  Once the adjustments for autonomous and shared-use vehicles are accounted for, 
the year 2040 auto operating cost ranges from $0.13 per mile to $0.37 per mile with a most likely of $0.21 
per mile. 

For year 2040, in addition to privately owned non-autonomous vehicles, it is 
possible that autonomous vehicles and shared-use vehicles will have high enough 
market penetration to affect the overall auto operating cost for long-distance trips.  
Appendix H provides background on auto operating costs for autonomous and 
shared use vehicles and their impacts on overall auto operating costs as used for 
the 2040 analysis.  Based on the adjustments for autonomous and shared-use 
vehicles, the year 2040 auto operating cost ranges from $0.13 per mile to $0.37 per 
mile, with a most likely of $0.21 per mile. 
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3.4 HSR FARES 
The original base average HSR fare was set at 83 percent of airfares for the 
Northern California to Southern California market, creating a cap on intermediate 
average fares of $89.  This remains the most likely HSR fare scenario for each 
forecast year.  Variability in HSR fares from 2025 to 2029 is assumed to be 
consistent with variability in airfares over the five-year period from 2009 to 2014.  
The maximum HSR fares for years 2025 and 2029 is based on the increase in 
weighted average of airfare from 2009 to a weighted average of airfare in 2014 for 
all Southern California to Northern California air travel.  Specifically, air travel for 
the six main Southern California airports (i.e., Los Angeles International Airport 
(LAX), Burbank Bob Hope Airport (BUR), Long Beach Airport (LGB), John Wayne 
Airport (SNA), Ontario International Airport (ONT), and San Diego International 
Airport (SAN)); and four main Northern California airports (i.e., San Francisco 
International Airport (SFO), Sacramento International Airport (SMF), Oakland 
International Airport (OAK), and San Jose International Airport (SJC) was 
examined.  It was assumed that HSR fares would increase by an equivalent 
amount to the highest airfare increase seen in the market in the five-year period. 

The minimum for years 2025 and 2029 is based on the lower weighted average of 
airfare offered by a new market entrant (i.e., Virgin America), compared to a 
market incumbent (i.e., United Airlines) across two key, comparable segments 
(i.e., LAX/SFO and SAN/SFO).  This calculation is based on the idea that to 
capture initial market share, HSR may offer lower fares than anticipated. 

The minimum for year 2040 is based on the compound annual growth rate (CAGR) 
that is calculated assuming that the base HSR fare decreases to the minimum HSR 
fare within a five-year period.  The minimum fare for year 2040 applies the derived 
CAGR from year 2027 to year 2040 assuming the base fare for year 2027.  The 
maximum for year 2040 is based on the CAGR that is calculated assuming that the 
base HSR fare increases to the maximum HSR fare set for the year 2027.  The 
maximum fare for 2040 applies the derived CAGR from year 2027 to year 2040 
assuming the base fare for year 2027.  Table 3.3 shows the range in HSR fares for 
each forecast year as percent change from the base fare.  HSR fare has a triangular 
distribution. 
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Table 3.3 Range of HSR Fares 
2015 Dollars 

Forecast Year 
and Operating 
Plan Minimum Base/Most Likely Maximum 

2025 VtoV -15.4% = $69 for San Jose to 
North of Bakersfield 

$82 for San Jose to 
North of Bakersfield 

+27.5% = $105 for San Jose 
to North of Bakersfield 

2029 PH1 -15.4% = $75 for 
San Francisco to Los Angeles 

$89 for San Francisco – 
Los Angeles 

+27.5% = $113 for 
San Francisco to Los Angeles 

2040 PH1 -35.3% = ~$58 for 
San Francisco to Los Angeles 

$89 for San Francisco – 
Los Angeles 

+88.1% = $167 for 
San Francisco to Los Angeles 

 

3.5 HSR FREQUENCY OF SERVICE 
The number of roundtrip HSR trains that are actually scheduled may vary from 
the planned service levels.  The most likely scenario matches the current planned 
levels of service in the base model runs.  The minimum is based on the absolute 
least amount of service that could be expected to be run once the system is 
constructed.  The maximum service frequency is based on the maximum amount 
of service that could be expected to run on a Silicon Valley to Central Valley line 
system for year 2025 and a level of service that approaches maximum track 
capacity, subject to a flexible service plan, for year 2029 and year 2040.  Table 3.4 
shows the range in trains per day for each forecast year.  HSR frequency of service 
uses a triangular distribution. 

Table 3.4 Range in HSR Frequency of Service 

Forecast Year 
Minimuma 

(Roundtrips/Day) 
Base/Most Likely  
(Roundtrips/Day) 

Maximum 
(Roundtrips/Day) 

2025 (VtoV) 14 22 76 

2029 & 2040 (Phase 1) 44 98 152 

a For comparison, the Capital Corridor runs 15 roundtrips per day. 

3.6 AVAILABILITY AND FREQUENCY OF SERVICE 

OF CVR AND HSR BUSES 
The availability and frequency of service of CVR and HSR buses is a discrete 
variable that considers the presence, or lack of, specific improvements to 
connecting rail services and HSR bus connections.  This risk variable is only 
considered for the year 2025 Silicon Valley to Central Valley line scenario because 
these connections have less of an impact once the Phase 1 system is completed.  
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The variable is composed of three potential future scenarios (1, 2, and 3) with a 
probability assigned to each scenario.  Only one of the three scenarios is chosen 
for each draw of the Monte Carlo simulation.  The scenarios consider the following 
CVR improvements: 

 Construction of a new BUR Metrolink station that would be closer to the high-
speed rail station, which is set to begin in 2015, and thus has a low risk of not 
being constructed. 

 Electrification of Caltrain, which is funded and set to be completed in 2020 or 
2021. 

 Increasing San Joaquin service frequency to that which is projected in the 2013 
California State Rail Plan.  This proposed service frequency is above current 
capacity levels negotiated with freight railroads, thus, increasing capacity to 
this frequency level would require changes to those agreements and/or 
improvements to the line that are in the planning stages now. 

The three distinct scenarios that were considered are as follows: 

 Scenario 1.  No service improvements are made to CVR above 2015 levels.  No 
HSR buses are provided to meet HSR trains. 

 Scenario 2.  All future CVR improvements are completed, including the BUR 
Metrolink station and the Electrification of Caltrain, with the exception of the 
San Joaquin service improvements.  About 75 percent of the originally planned 
HSR buses are in service to meet HSR trains. 

 Scenario 3.  All planned CVR improvements are completed, and all planned 
HSR buses are available to meet the HSR trains. 

The discrete probabilities of each of these scenarios occurring were set at 
10 percent for Scenario 1, 50 percent for Scenario 2, and 40 percent for Scenario 3. 

3.7 COEFFICIENT ON TRANSIT ACCESS-EGRESS TIME/
AUTO DISTANCE VARIABLE 
Between some regions in California, especially in the VtoV scenario, individuals 
who wish to travel primarily by transit to reach their destination must transfer 
from a HSR bus or CVR system before or after traveling on HSR.  International 
experience has shown that there is uncertainty around how the need to make these 
transfers affects overall HSR ridership.  The uncertainty in the impact of transfers 
can have a significant impact on ridership and revenue, especially when the CVR 
or HSR bus leg of the journey is relatively long in relation to the HSR travel length.  
Thus, this uncertainty was included as a potential risk variable. 

The transit transfer uncertainty is addressed by varying the range for the 
parameters associated with transit access/egress travel times relative to origin-
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destination (OD) distances variable.  This variable appears in the access and egress 
modal utility functions as follows: 

𝜷 × max (𝟎,
[𝑨𝒄𝒄 𝒐𝒓 𝑬𝒈𝒓 𝑻𝒊𝒎𝒆]

[𝑶𝑫 𝑫𝒊𝒔𝒕𝒂𝒏𝒄𝒆]
− 𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅) 

In the base model, several threshold parameter options were tested in model 
estimation, and a value of 0.2 was ultimately identified.  The values of beta (the 
variable coefficient) were estimated directly, and were found to be negative.  
Separate coefficients were estimated for auto access/egress modes versus non-
auto access/egress modes (transit and walk/bike), with the magnitude of auto 
coefficients estimated to be much larger.  This variable essentially provides a 
disincentive for selecting a main mode that requires a long access or egress time, 
relative to the entire trip length.  The uncertainty associated with the variable is 
only applied for the HSR main mode (i.e., not air or CVR). 

An example of the experience in France was researched.  In the French experience, 
moving from a direct CVR connection between Paris and Grenoble to an HSR trip 
from Paris to Lyon and a connection to CVR from Lyon to Grenoble saved 
90 minutes of total travel time, but did not result in increased ridership.  The 
observed “90-minute penalty” in France served as a rough benchmark for 
determining a lower bound on the model parameters. 

Appendix E details the process taken to develop the minimum parameter values 
for this variable.  The minimum threshold value is set to 0.1, since a lower 
threshold would start to impact local transit access and other unrelated trips.  The 
minimum coefficient value is set to -2.0 for business/commute purpose and -1.3 
for recreation/other purpose.  These are set to achieve penalty values of 51 and 
66 minutes.  These penalty value benchmarks come from the penalties the model 
suggests for the French scenario for drive access/egress modes.  The lower bound 
on the transit penalty should not exceed the penalty suggested by the model for 
drive access/egress modes.  A 51-minute and 66-minute penalty was used instead 
of the 90-minute penalty observed in the French experience because it offered 
more reasonable model behavior overall, and it was not desirable to change the 
long-distance models in unreasonable ways to match a single observed data point.  
The coefficient and threshold value vary in parallel (i.e., perfect correlation) for the 
full model runs and Monte Carlo simulation. 

The maximum threshold and coefficient values are set to be identical to the 
calibrated base/most likely values since there is no evidence to suggest that the 
penalty to transfer from transit to HSR should be less than the penalty used for 
CVR and Air that was developed based on observed data.  A PERT distribution 
was used for this variable. 
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3.8 AIRFARES 
Airfares are only considered as a risk variable for year 2029.  The airfare 
uncertainty is based on the variability in airfares from 2009 to 2014 from routes 
that serve the major airports of the Northern California-Southern California 
market.  Mean, minimum, and maximum annual weighted airfares by route were 
calculated for each year between 2009 and 2014.  Since, the base airfares (i.e., year 
2009) represent the lowest point from the range analyzed, the base fares were set 
as the minimum value.  The most likely value was set as the decimal factor 
difference from the base fare and the average of the calculated mean airfares across 
the analyzed routes (i.e., 20 percent higher airfares compared to the base fares).  
The maximum value was set as the decimal factor difference from the base fare 
and the average of the calculated maximum airfares across the analyzed routes 
(i.e., 33 percent higher airfares compared to the base fares).  A triangular 
distribution was used for this variable. 

3.9 NUMBER AND DISTRIBUTION OF HOUSEHOLDS 

THROUGHOUT THE STATE 
Statewide population forecasts were assembled from various sources, as shown in 
Figure 3.3 and documented in detail in Appendix F.  As shown in Figure 3.3, short-
term forecasts (i.e., through year 2029) do not differ very much, while year 2040 
has higher variation in forecasts.  Thus, uncertainty associated with number and 
distribution of households throughout California is only considered for year 2040. 

The maximum value was set based on sources with high projections that were 
adjusted further up based on possible, though unlikely events, such as increased 
lifespans, increased fertility rates, comprehensive immigration reform that allows 
more immigrants, and more balanced domestic migration.  The minimum value 
was set based on sources with low projections that were adjusted further down 
based on possible, though unlikely events, such as substantial tightening of 
immigration policy and reduced lifespan.  The Most Likely forecast uses a 
combination of mid-range forecasts.  Table 3.5 describes the population forecast 
assumptions and CAGR for each forecast level. 
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Figure 3.3 Statewide Population Forecasts by Source of Forecast 
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Table 3.5 Statewide Population Forecasts 

Forecast Source of Forecast 
CAGR  

(2010 to 2040) 

2040 Forecast 
California 

Population 

Maximum  Statewide population total matched to Department of Finance (DOF) 
“actuals” through 2014. 

 For 2015 to 2020, statewide population growth follows the California 
Statewide Travel Demand Model (CSTDM) 20-year moving average 
growth rate. 

 For 2021 to 2040, statewide population growth follows the CSTDM 20-
year moving average growth rate plus additional 50,000 residents per 
year (2021), increasing to 150,000 residents per year in 2050. 

1.16% 52 million 

Mid Range  Statewide population total matched to DOF “actuals” through 2014. 

 Between 2015 and 2023, statewide population growth follows the 
midpoint between the U.S. Census (National) and DOF 2014 (California) 
20-year moving average growth rates.  (The two growth rates converge 
at 0.82 percent in 2023.) 

 Beyond 2023, statewide population growth follows the DOF 2014 20-
year moving average growth rates. 

0.82% 47 million 

Minimum  Statewide population total matched to DOF “actuals” through 2014. 

 Between 2015 and 2020, statewide population growth follows the U.S. 
Census (National) 20-year moving average growth rate. 

 For 2021 to 2040, statewide population growth follows the 20-year 
moving average growth rate minus 25,000 fewer residents per year 
(2021), decreasing to 100,000 fewer residents per year in 2050. 

0.58% 44 million 

 

Once population forecasts were developed, the population forecasts were 
converted to household totals using the following assumptions: 

 Maximum and Most Likely.  Statewide household total calculated by 
applying the CSTDM household size assumptions to the statewide population 
totals; and 

 Minimum.  Statewide household total calculated by applying the average 
household size assumptions from three sources (i.e., CSTDM, CEF 2014, and 
Moody’s 2013) to the minimum statewide population totals. 

Household projections ranged from 14.98 million households to 17.84 million 
households with a most likely value of 16.13 million households for 2040.  A 
triangular distribution was utilized for the distribution. 

3.10 AUTO TRAVEL TIME 
By 2040, it is likely that autonomous vehicles (AV) will compose some share of all 
automobile travel.  One of the promises of AV technology is to improve travel 
speeds by connecting vehicles, allowing them to travel much closer to one another 
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at high speeds, effectively increasing capacity and reducing congestion.2  While 
AVs will improve travel times eventually, current forecasts show that it is unlikely 
that AVs will represent even a majority of auto travel by 2040, relative to non-AVs.  
Most of the travel time benefits of AVs rely on AVs representing a clear majority 
of autos, with the most benefits really being achieved once market penetration 
reaches about 75 percent (since a mix of AVs and non-AVs does not achieve the 
same ability to space vehicles closer together).3  However, market penetration is 
expected to be between 10 percent and 75 percent based on available research.3,4 

The current congested travel times forecast for 2040 are considered to be the 
maximum auto travel times that are likely to occur in year 2040.  While it is 
possible that AVs, in the short term, increase congestion, there is minimal risk in 
that direction.  On the other end of the spectrum, free-flow travel time is 
considered the absolute minimum travel times that could occur.  In theory, it 
would actually be possible to achieve better speeds than free-flow speeds at very 
high levels of AV market penetration.  However, that is unlikely by 2040 given 
limitations due to market penetration and highway design. 

The AV effect on auto travel times was modeled using a weighted average of 
congested and free-flow travel times, using a travel time index varying between 0 
and 1 based on the following: 

 At 0, congested travel times are observed; 

 At 1, free-flow travel times are observed; and 

 At 0.5, the midpoint travel times between congested and free-flow are 
observed. 

Appendix G details the methodology undertaken to develop the range in auto 
travel times based on two key sources of uncertainty that affect the travel time 
index:  1) market penetration, and 2) the impact of AV travel time at each market 
penetration level. 

The effect of market penetration on travel time may be different depending on 
whether a vehicle is traveling on a freeway compared to an arterial.  Speed 
improvements could be realized at lower market penetrations on freeways 
compared with arterials, where more advanced technology might be required to 
realize improved travel speeds.  Thus, the relationship between market 
penetration and travel time is segmented across freeways and arterials.  However, 

                                                      

2 Bierstedt, J., A. Gooze, C. Gray, J. Peterman, L. Raykin, and J. Walters, 2014.  Effects of 
Next Generation Vehicles on Travel Demand and Highway Capacity by FP Think 
Working Group Members.  FP Think Working Group. 

3 Littman, T., 2015.  Autonomous Vehicle Implementation Predictions:  Implications for 
Transport Planning.  February 27, 2015.  Victoria Transport Policy. 

4 Milakis, D., M. Snelder, B. van Arem, B. van Wee, and G. Correia.  2015.  Development 
of Automated Vehicles in the Netherlands:  Scenarios for 2030 and 2050.  Delft, The 
Netherlands:  Delft University of Technology. 
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since the experimental design can handle only a single auto travel time index 
variable, freeway and arterial indices are set to be perfectly correlated.  Table 3.6 
shows the AV market penetration range for year 2040 and the minimum and 
maximum travel time indices for freeways and arterials. 

Table 3.6 Auto Travel Time Index Range for Freeways and Arterials 

Risk Variable Minimum Most Likely Maximum 

AV Market Penetration 10% 35% 75% 

TT Index – Freeway 0.00 0.06 0.78 

TT Index – Arterial 0.00 0.03 0.40 
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4.0 Implementation of Risk 
Analysis 

The approach to developing a risk analysis model for quantifying the uncertainty 
associated with HSR ridership and revenue can be formally described as 
developing a meta-model for uncertainty quantification.  Uncertainty 
quantification refers to the process of propagating input uncertainty through a 
computational model in order to estimate and characterize the response 
uncertainty.  For the 2016 Draft BP risk analysis, input or model uncertainty is 
addressed by the risk variable ranges and distributions, and the response 
uncertainty is captured by the probability distribution of high-speed rail ridership 
and revenue. 

This type of analysis is new to the field of travel demand forecasting, but relatively 
common in other fields.  The literature was reviewed from these other fields to 
develop an experimental design appropriate for this type of analysis.5  A meta-
model is any relatively simple mathematical relationship between parameters and 
a response, often based on a subset of data.  For this analysis, the relationship 
between parameters and response comes directly from the BPM-V3, which is a 
complex mathematical model.  To capture risk, a Monte Carlo simulation of the 
model was needed, but due to the model’s complexity, it was infeasible to run it 
thousands of times.  Therefore, regression meta-models were developed to 
approximate the relationships between BPM-V3 revenue and ridership and model 
inputs and variables based on actual model runs.  The regression model can be run 
very quickly (i.e., tenths of a second), while the BPM-V3 model takes hours to run.6  
Based on the model runs that were conducted, it is possible to test the regression 
meta-model’s ability to replicate the results of the original model.  The meta-
models that were used were all able to replicate at least 90 percent of the variation 
in the base model, a very strong and sufficient relationship. 

As shown in Figure 4.1, there are three steps that comprise the risk analysis 
implementation.  The regression meta-model is developed from a set of full 
BPM-V3 runs (Step 6).  The independent variables of the regression model are the 
risk analysis variables, and the dependent variable is either HSR revenue or 
ridership.  Each full BPM-V3 model run acts as one data point for use in estimating 
the regression equations (Step 7).  A Monte Carlo simulation, of 50,000 draws, is 

                                                      

5 One Hour Presentation:  Surface (Meta-Model) Methods and Applications, 
B. M. Rutherford, L. P. Swiler, T. L. Paez, and A. Urbina, Sandia National Laboratories; 
presented at the 2006 IMAC-XXIV:  Conference and Exposition on Structural Dynamics. 

6 It takes approximately 12 hours to run the BPM-V3 model using a one-thread set-up.  It 
takes one hour to run the BPM-V3 model using a 12-thread set-up, which is the maximum 
possible threads that can be run on one standard computer. 

http://sem-proceedings.com/24i/sem.org-IMAC-XXIV-Conf-s15p01-One-Hour-Presentation-Surface-Meta-model-Methods-Applications.pdf


Draft 2016 California High-Speed Rail Business Plan Ridership and Revenue Risk Analysis 

4-2  Cambridge Systematics, Inc. 

then run using the ridership and revenue regression meta-models and different 
combinations of values of the risk variables, with the values being drawn from the 
assigned risk variable distributions (Step 8).  The revenue output from these runs 
is then used to develop the revenue range and probability of occurrence. 

Figure 4.1 Eight-Step Risk Analysis Approach:  Implement Risk Analysis (Steps 6 to 8) 

 

 

4.1 BPM-V3 MODEL RUNS 
An experimental design was developed to determine the number of full BPM-V3 
model runs needed and the combination of variable values that compose each 
BPM-V3 model run.  The analysis used a combination of a Fractional Factorial 
design and a Sampling design to develop a two-step analysis process.  Fractional 
Factorial designs are classical designs with a number of desirable properties: 

 They do not require many runs per variable explored; 

 They are powerful in their ability to distinguish those variables that are most 
important and those of lesser importance; and 

 They can be designed to ensure that both main effects and interaction effects 
can be estimated from the results. 

Sampling designs are particularly useful for computer experiments that exhibit 
systematic noise.  The combination of the two for this analysis ensured interaction 
effects could be tested, guaranteed that the full model runs spanned the solution 
space, and kept the number of full BPM-V3 full model runs to a manageable 
number.  Additional details of the development of the experimental design 
process are discussed in Appendix H. 

As an initial step in the analysis, a fractional factorial three-level Resolution IV 
Design was used to test the existence of two-factor interaction effects.  Three-level 
refers to the number of distinct values each risk variable can take.  In this case, 
each risk variable was set to one of three levels (i.e., minimum, most likely, and 
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maximum) for each of the full model runs.7  A three-level design allows for 
estimating a nonlinear functional form for each variable.  Resolution IV indicates 
that two-way interaction effects can be detected and estimated.  Two independent 
variables interact if the effect of one of the variables differs depending on the level 
of the other variable.  A total of 81 full model runs is needed for this design.  For 
all alternatives and forecast years, three regression models were developed from 
these designs.  One regression was a main effects only regression that did not 
include interaction terms or nonlinear terms.  Another was a main effects only 
regression that included both linear and nonlinear terms, but no interaction terms.  
The other regression tested interaction terms.  We found that within the solution 
space tested, there were no two-way interaction effects that were strong enough 
to warrant including in the regression model.  The results of these other models 
for the various operating plans and forecast years are discussed in Appendix I. 

As a result of the findings based on the initial step, the final experimental design 
included 59 full model runs for each alternative and forecast year, as follows: 

 27 model runs using fixed minimum, most likely, and maximum values of risk 
variables specified using a three-level Resolution III fractional factorial design.  
Only 3 of these model run overlapped with the 81 model runs using the three-
level Resolution IV Design 

 27 model runs sampled uniformly from low, mid, and high ranges of the risk 
variables using a random sampling design.  These runs ensured that the 
interior of the solution space was well-represented and not biased toward the 
edges. 

 5 model runs representing extreme scenarios of full upside (3 runs) and full 
downside (2 runs); that is, all inputs in these runs were set to values that would 
either be toward the very favorable or very unfavorable end of the spectrum 
of HSR revenue and ridership.  The runs correspond to the following 
percentiles for each risk variable:  10, 25, 75, 90, and 100.  The 0th percentile run 
was not added because the experimental design included this run already, 
where all inputs are set to the “min” value, and the Minimum value always 
corresponded to the absolute minimum, unfavorable value for HSR revenue 
or ridership. 

Thus, the final experiment design includes both the Fractional Factorial design to 
help understand extreme values and tails of distributions, and the Sampling 
design which helps fill in the space in the middle of the distribution where most 
results fall. 

                                                      

7 As stressed by the CAHSRA Ridership Advisory Technical Panel (RTAP) in their 
Report 11, it is important to set the bounds of the inputs used in the regression model to 
the same or wider than the range of inputs used in the Monte Carlo analysis. 
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4.2 FINAL REVENUE REGRESSION MODELS 
The forecast revenues from the 59 BPM-V3 runs were used as data points for 
developing the meta-model linear regression equations of the log of revenue as a 
function of the 10 risk variables.8  The final set of regression models for each model 
year and operating plan took the following functional form:  ln(Revenue) = 
Constant + β1 × Var1 + β2 × Var2…+ β10 × Var10.  This model is a main effects model 
with no interaction terms and matched the observed data well.  For the 2040 
model, a nonlinear transformation of the HSR fare variable was also found to be 
significant.9  The estimated models are shown in Table 4.1.  All models have 
r-squared values above 0.9, indicating that the regression model fits the BPM-V3 
data points very well, and all of the signs and magnitudes of model coefficients 
are sensible.  For example, a positive value on auto operating cost indicates that, 
as auto operating cost increases (i.e., it becomes more expensive to drive), HSR 
revenue also increases. 

Table 4.1 Revenue Regression Model Results 

Constant and Regression Model 
Variables 

2025 – VtoV line 2029 – Phase 1 2040 – Phase 1 

Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic 

Constant 20.581 89.1 21.171 68.9 21.071 114.0 

HSR Mode Choice Constant – 
Business 

0.230 15.4 0.180 14.5 0.194 11.4 

HSR Mode Choice Constant – 
Commute 

0.088 3.3 0.086 3.9 0.091 3.0 

HSR Mode Choice Constant – 
Recreation/Other 

0.432 16.4 0.390 17.7 0.391 12.9 

Trip Frequency Constant – 
Business/Commute 

0.503 6.3 0.587 8.9 0.596 6.8 

Trip Frequency Constant – 
Recreation/Other 

1.082 5.2 0.735 4.5 0.917 4.2 

Auto Operating Cost 0.948 1.6 1.404 3.1 1.315 2.9 

HSR Fare -0.587 -3.3 0.067 0.5 0.847 1.9 

HSR Headway -0.245 -4.1 -0.156 -4.1 -0.160 -3.0 

                                                      

8 The original 81 runs developed in the first step were not used for the development of the 
final regression equations in order to reduce the number of random sampling designs 
needed.  To ensure the interior of the solution space was well-represented and not biased 
toward the edges, it is essential to perform the same number of three-level random 
sampling runs as fractional factorial runs. 

9 HSR fare was estimated as nonlinear for year 2040 because the range used for year 2040 
fares was much wider than for the other model years and produced more of the parabolic 
relationship between fares and revenue. 
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Constant and Regression Model 
Variables 

2025 – VtoV line 2029 – Phase 1 2040 – Phase 1 

Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic 

HSR Access/Egress Connecting 
Service – Scenario 1 

-0.158 -2.4 n/a n/a n/a n/a 

HSR Access/Egress Connecting 
Service – Scenario 3 

-0.072 -1.1 n/a n/a n/a n/a 

Airfare n/a n/a -0.003 -0.0 n/a n/a 

HSR Access-Egress by Transit 
Variable 

1.867 2.4 1.550 2.4 n/a n/a 

Number and Distribution of Statewide 
Households 

n/a n/a n/a n/a 0.075 0.9 

Auto Travel Time Index n/a n/a n/a n/a -0.097 -1.0 

Exp (HSR Fare) n/a n/a n/a n/a -0.212 -1.8 

Model Statistics       

Sum of Squared Error 2.414 1.686 3.182 

R2 0.942 0.945 0.909 

 

4.3 FINAL RIDERSHIP REGRESSION MODELS 
The forecast ridership from the 59 BPM-V3 runs were used as data points for 
developing the meta-model linear regression equations of the log of ridership as a 
function of the 10 risk variables.  The final set of ridership regression models for 
each model year and operating plan took the following functional form:  
ln(Ridership) = Constant + β1 × Var1 + β2 × Var2…+ β10 × Var10.  This model is a 
main effects model with no interaction terms.  The estimated models are shown in 
Table 4.2.  All models have r-squared values above 0.9, indicating that the 
regression model fits the BPM-V3 data points very well, and all of the signs and 
magnitudes of model coefficients are sensible.  For example, a negative value on 
HSR fare indicates that, as HSR fare increases, HSR ridership decreases.  Note that 
for revenue this is not always the case since for certain values of HSR fare; the 
increase in HSR ridership offsets the loss of revenue from a decrease in HSR fare. 
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Table 4.2 Ridership Regression Model Results 

Constant and Regression Model 
Variables 

2025 – VtoV line 2029 – Phase 1 2040 – Phase 1 

Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic 

Constant 17.557 75.4 18.350 55.5 18.317 116.3 

HSR Mode Choice Constant – Business 0.222 14.8 0.184 13.8 0.196 11.9 

HSR Mode Choice Constant – 
Commute 

0.096 3.6 0.103 4.3 0.111 3.8 

HSR Mode Choice Constant – 
Recreation/Other 

0.440 16.6 0.415 17.6 0.409 14.0 

Trip Frequency Constant – Business/
Commute 

0.498 6.1 0.595 8.6 0.603 7.1 

Trip Frequency Constant – Recreation/
Other 

1.053 5.0 0.710 4.1 0.862 4.1 

Auto Operating Cost 0.881 1.5 1.117 2.3 1.026 2.3 

HSR Fare -1.425 -8.0 -0.770 -4.9 -0.679 -10.1 

HSR Headway -0.254 -4.2 -0.160 -3.9 -0.160 -3.1 

HSR Access/Egress Connecting 
Service – Scenario 1 

-0.143 -2.1 n/a n/a n/a n/a 

HSR Access/Egress Connecting 
Service – Scenario 3 

-0.076 -1.1 n/a n/a n/a n/a 

Airfare n/a n/a -0.056 -0.3 n/a n/a 

HSR Access-Egress by Transit Variable 2.167 2.8 2.273 3.3 n/a n/a 

Number and Distribution of Statewide 
Households 

n/a n/a n/a n/a 0.056 0.7 

Auto Travel Time Index n/a n/a n/a n/a -0.082 -0.8 

Model Statistics       

Sum of Squared Error 2.414 1.871 2.977 

R2 0.942 0.948 0.935 

 

4.4 REVENUE RESULTS OF THE MONTE CARLO 

SIMULATION 
A Monte Carlo simulation using the regression meta-model was run 50,000 times 
using different combinations of values of the risk variables, with the values being 
drawn from the assigned risk variable distributions.  Note, some risk factors 
include multiple components that are sampled in the Monte Carlo analysis.  For 
example, values are sampled from both the uncertainty component distribution 
and the terminal/wait time component distribution for the HSR Mode Choice 
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Constant risk variable.  Appendix J details the components of each risk variable, 
the range of values and distributions for each component, and correlation between 
distributions of risk variables.  Setting a positive correlation between two risk 
variable components results in the Monte Carlo simulation having a higher 
probability of sampling from the same point on the distribution (e.g., a 100-percent 
positive correlation would result in two risk variables always being chosen from 
the same percentile point on the distribution). 

The revenue output from these 50,000 Monte Carlo runs was used to develop the 
revenue range and probability of occurrence, as shown in Table 4.3.  Short-
distance trips less than 50 miles within the Southern California Association of 
Governments (SCAG) and the Metropolitan Transportation Commission (MTC) 
contribute $12 million in revenue in year 2029 and 2040.  This short-distance 
revenue was added to the year 2029 and year 2040 long-distance revenue for all 
probability levels to obtain total HSR revenue. 

The “base run” is the revenue for the year and scenario forecast using the BPM-V3 
model with the base input variable values.  The percentages shown are where the 
original base revenue falls on the continuum of revenue forecasts produced by the 
various risk models. 

Table 4.3 Year 2025 to 2040 HSR Revenue Range and Probability 
of Occurrence10 

Probability 

Revenue (Millions of 2015 Dollars) 

2025 VtoV line 2029 PH1 2040 PH1 

Minimum $109 $634 $704 

1% $186 $950 $1,038 

10% $273 $1,303 $1,471 

25% $350 $1,619 $1,852 

Median $472 $2,082 $2,419 

75% $638 $2,691 $3,153 

90% $822 $3,359 $3,963 

99% $1,192 $4,610 $5,606 

Maximum $2,106 $6,628 $9,191 

Base Run $449 (46%) $2,069 (49%) $2,413 (50%) 

 

Figures 4.2 plot the cumulative distribution of HSR revenue for years 2025, 2029, 
and 2040, respectively.   

                                                      

10 The results are raw model output and do not account for ramp-up. 
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Figure 4.2 Year 2025 Cumulative Distribution of HSR Revenue 
2015 Dollars 

 

 

Figure 4.3 Year 2029 Cumulative Distribution of HSR Revenue 
2015 Dollars 
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Figure 4.4 Year 2040 Cumulative Distribution of HSR Revenue 
2015 Dollars 
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Table 4.4 Years 2025 to 2040 HSR Ridership Range and Probability 
of Occurrence11 

Probability 

Ridership 
(Millions) 

2025 VtoV line 2029 Ph1 2040 Ph1 

Minimum 1.7 10.2 8.9 

1% 2.9 16.3 15.8 

10% 4.3 22.9 23.5 

25% 5.6 28.7 30.3 

Median 7.6 37.5 40.7 

75% 10.4 49.1 54.7 

90% 13.5 62.0 70.5 

99% 19.9 86.6 104.1 

Maximum 39.1 137.6 179.1 

Base Run 7.3 (46%) 37.1 (49%) 42.8 (54%) 

 

Figures 4.5 to 4.7 plot the cumulative distribution of HSR ridership for years 2025, 
2029, and 2040, respectively. 

Figure 4.5 Year 2025 Cumulative Distribution of HSR Ridership 

 

 

                                                      

11 The results are raw model output and do not account for ramp-up. 
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Figure 4.6 Year 2029 Cumulative Distribution of HSR Ridership 

 

 

Figure 4.7 Year 2040 Cumulative Distribution of HSR Ridership 
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4.6 CONTRIBUTIONS TO RISK VARIANCE 
One feature of the risk analysis approach taken here is that uncertainty forecasts 
of HSR ridership and revenue result from the underlying uncertainty in several 
variables that have direct impacts on HSR ridership and revenue.  Each of those 
variables contributes to the uncertainty in different ways, which can be quantified 
by examining the variance in the forecasts. 

The contribution of the variance of each risk variable component is shown in 
Table 4.5.  The contribution to risk variance for each variable considers two 
features:  1) the risk variable distribution, and 2) the impact that a unit change in a 
risk variable has on revenue or ridership, which comes directly from the regression 
coefficients.  The bigger the impact a variable has on revenue or ridership, the 
bigger its contribution to risk variance, all else being equal.  Likewise, the wider a 
risk variable’s distribution, the bigger its contribution to risk variance, all else 
being equal. 

The calculation itself relies on the Monte Carlo simulation plus an additional error 
component.  It adds an error term, which has a size consistent with the error 
observed from the actual regression model, to the simulated data points, and treats 
those as observed data points.  The calculation comes from Lindeman, Merenda, 
and Gold (1980) and is called the LMG measure.  The original calculation is based 
on obtaining importance measures for a regression model, which is why the error 
terms are added.  The calculations are valid even when explanatory variables (e.g., 
risk variables) exhibit correlation among themselves, which is partly why this 
measure was chosen. 

The HSR constants’ unexplained variation contributes the most to the variance in 
the revenue distribution.  This result reflects the large distribution on this risk 
variable component, as well as the large sensitivity of this variable to HSR revenue 
and ridership.  The next set of variables that contributes the most to the variance 
in HSR revenue is the trip frequency constants’ unexplained variation.  These 
results make sense.  There is simply a significant amount of uncertainty associated 
with how travelers will view HSR, because there is no way to observe and collect 
data related to it until HSR opens.  On the other hand, the level of uncertainty 
associated with the HSR attributes and auto costs is much lower, because they are 
controllable in the case of the former, or there is a large amount of existing data to 
rely on in the case of the latter. 

Overall, the range and distribution in revenue and ridership reflect the uncertainty 
associated with a number of the most important determinants across the forecast 
years.  The variables were carefully examined and researched before assigning 
appropriate distributions to them.  The demand model used for forecasting was 
constructed from and closely matches the results of a complex travel model system 
that has been vetted with industry experts over the course of several years. 
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Table 4.5 Contribution of HSR Revenue Variance of each Risk Variable 
Component 

Risk Variable 
Risk Variable 
Component 2025 VtoV 2029 PH1 2040 PH1 

HSR Constant – Business Unexplained Variationa 35.1% 32.0% 32.2% 

HSR Constant – Commute Unexplained Variationa 13.8% 14.1% 14.0% 

HSR Constant – Recreation/
Other 

Unexplained Variationa 38.7% 40.3% 37.8% 

Terminal & Wait Time Businessb, Commuteb 
Recreation/Otherb 

1.4% 1.5% 1.5% 

Trip Frequency Constant – 
Business/Commute 

Unexplained Variationc 2.3% 3.4% 3.6% 

Economic Cycled 1.3% 2.1% 2.6% 

Trip Frequency Constant – 
Recreation/Other 

Unexplained Variationc 2.2% 1.9% 2.4% 

Economic Cycled 1.3% 2.1% 2.5% 

Base Auto Operating Costs n/a 0.2% 0.8% 0.6% 

HSR Fares n/a 1.5% 0.0% 0.6% 

HSR Headway n/a 1.9% 1.5% 1.3% 

HSR Connecting Service n/a 0.0% n/a n/a 

HSR Access/Egress by 
Transit Variable 

Index Variable 0.4% 0.3% n/a 

Airfares n/a n/a 0.0% n/a 

Number and Distribution of 
Statewide Households 

n/a n/a n/a 0.2% 

Automated Vehicle Market 
Penetration 

Penetration n/a n/a 0.2% 

Automated Vehicle Effect on 
Auto Travel Times 

Alpha, Beta n/a n/a 0.0% 

Automated Vehicle Fuel 
Economy 

 n/a n/a 0.0% 

Shared Use Vehicle Share  n/a n/a 0.3% 

Shared Use Vehicle Cost 
per Mile 

 n/a n/a 0.4% 

a 50-percent correlation for random draws from distributions in Monte Carlo simulation. 
b 100-percent correlation for random draws from distributions in Monte Carlo simulation. 
c 50-percent correlation for random draws from distributions in Monte Carlo simulation. 
d 100-percent correlation for random draws from distributions in Monte Carlo simulation. 
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A. Risk Factors and Variables 
Considered 

Table A.1 summarizes the risk factors and variables that were included in the risk 
analyses.  Table A.2 summarizes the risk factors and variables that were 
considered for inclusion in the risk analyses, but eventually excluded as risk 
factors.  The tables include a description of each variable, potential causes of 
uncertainty in the variable, and any qualitative or quantitative (such as sensitivity 
test results) information suggesting why the variable was or was not included in 
the risk analysis.  Some variables that were originally considered for inclusion in 
the risk analysis were later removed based on additional analyses that concluded 
that their impact was smaller than originally anticipated (i.e., either the range of 
uncertainty was significantly narrower than what was tested in the sensitivity tests 
or the impact was too small for inclusion).  Table A.3 lists risk factors that were 
excluded from consideration as potential risk variables. 
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Table A.1 Reasoning for Inclusion of Variables in Risk Analysis 

Model Variable 
Reasons for Considering Model Variable  

and Risk Factors Represented 
Sensitivity Results/Qualitative Reasoning 

for Inclusion of Variable 
Forecast 

Years 

High-speed rail main 
mode choice constants 
(one for each trip 
purpose – business, 
commute, recreation/
other) 

The mode constants capture the unexplained variation 
in traveler mode choices after system variables (travel 
cost, time, reliability, and frequency of service) and 
demographics (household income, autos owned, 
household size, and number of workers) are taken into 
account.  Unexplained variation may include factors 
such as: 

 Comfort aboard trains, 

 Opinions regarding high-speed rail (HSR_, 

 Need for auto at destination, 

 Uncertainty regarding security screening procedures, 
and 

 Level of familiarity with HSR. 

 The 2014 Business Plan (BP) Risk Analysis demonstrated 
high sensitivity of ridership/revenue to the HSR constants. 

 The HSR constants are asserted based on results of stated-
preference surveys and cannot be calibrated; as a result, 
there is uncertainty with the constant itself. 

 There is uncertainty surrounding travelers’ true perception of 
HSR given the mode currently is unavailable 

 Uncertainty regarding final access times through the terminal 
and wait times can be represented through the constant 

All 

Trip frequency 
constants (one for 
each trip purpose – 
business, commute, 
recreation, and other) 

The trip frequency constants capture the unexplained 
variation in the numbers of long-distance trips travelers 
will take after accounting for household demographics 
and the accessibility of available destinations: 

 Impact of alternatives to travel (e.g., Skype, 
GoToMeeting, telecommuting, etc.); 

 Changing opinions regarding long-distance travel; 
and 

 Increased or decreased out-of-state travel replacing 
in-state travel. 

 The 2014 BP Risk Analysis demonstrated high sensitivity of 
ridership/revenue to the trip frequency constants. 

 The trip frequency constants were calibrated to reproduce 
2010 long-distance travel, which may not have been generally 
reflective of “typical” conditions since California was exiting a 
recession. 

 Even if 2010 represented the current norm, traveler opinions 
regarding long-distance travel may change over time. 

 Instead of including distributions of household and 
employment levels directly as a risk variable in the risk 
analysis model to account for changes in the state of the 
economy, risks associated with the state of the economy are 
accounted for within the trip frequency constant risk variable. 

All 

Auto operating costs This variable reflects the inherent risks in forecasting 
future: 

 Fuel costs; 

 Fuel efficiencies; 

 Adoption of alternative fuels/electric vehicles; 

 Most travelers divert to HSR from auto since auto is the 
dominant long-distance mode, carrying more than 95 percent 
of current long-distance trips. 

 HSR ridership and revenue are sensitive to changes in auto 
operating costs. 

All 
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Model Variable 
Reasons for Considering Model Variable  

and Risk Factors Represented 
Sensitivity Results/Qualitative Reasoning 

for Inclusion of Variable 
Forecast 

Years 

 Maintenance costs; 

 Possible phase in of vehicle mile traveled (VMT) 
charge program or increases in gas taxes; 

 Potential impacts of cap and trade on fuel costs; 

 Market penetration of autonomous connected 
vehicles; and 

 Higher share of “shared-use” vehicles 

 For Sensitivity tests indicate that for VtoV a 100-percent 
increase in auto operating costs would produce a 28-percent 
increase in HSR ridership and a 30-percent increase in 
revenue, while a 50-percent decrease in auto operating costs 
would produce a 13-percent decrease in ridership and a 15-
percent decrease in revenue. 

 For 2040 Phase 1 (PH1), increasing auto operating costs from 
20 to 26 cents per mile produced a 6-percent increase in HSR 
ridership and an 8-percent increase in revenue, while 
decreasing auto operating costs to 11 cents produced a 13-
percent decrease in ridership and a 15-percent decrease in 
revenue. 

HSR Fares A number of issues could affect actual fares charged to 
travelers, especially as the system is being opened, 
such as: 

 Institution of discount/premium fares (advance 
purchase, peak/off-peak, first/second class 
seating…); 

 The HSR fare structure might change in response to 
changing auto operating costs or air fares; and 

 Yield management and marketing strategies might be 
used to by a concessionaire to increase efficiency of 
the service. 

 HSR ridership and revenue are sensitive to fares. 

  Sensitivity tests indicate that for VtoV a 30-percent increase 
in HSR fares would produce a 21-percent drop in ridership 
and a 1-percent drop in revenue; a 15-percent decrease in 
HSR fares would produce a 9-percent increase in ridership 
and a 5-percent decrease in revenue. 

 For 2040 PH1, HSR ridership and revenue are sensitive to 
fares.  In a test run, a 30-percent increase in HSR fares 
produced a 20-percent drop in ridership and a 1-percent 
increase in revenue; a 15-percent decrease in HSR fares 
produced a 9-percent increase in ridership and a 5-percent 
decrease in revenue. 

All 

HSR Frequency of 
Service 

A number of issues could affect actual HSR frequency 
of service, especially as the system opens, such as: 

 Unexpected demand levels may compel the operator 
to increase or decrease service levels; 

 Yield management and marketing strategies might be 
used to by a concessionaire to increase efficiency of 
the service; and 

 Early implementation issues with equipment and 
operations or equipment delivery delays could 
preclude offering the planned frequency of service. 

 HSR ridership and revenue are sensitive to HSR frequency of 
service. 

 Sensitivity tests indicate that for VtoV a 50-percent increase in 
HSR headways would produce a 35-percent drop in ridership 
and a 6-percent drop in revenues; a 50-percent decrease in 
HSR headways would produce a 52-percent increase in 
ridership and a 22-percent decrease in revenue. 

 For 2040 PH1, a 50-percent decrease in HSR headways (time 
between trains) produced a 12-percent increase in ridership 
and a 11-percent revenue; a 50-percent increase in HSR 

All 
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Model Variable 
Reasons for Considering Model Variable  

and Risk Factors Represented 
Sensitivity Results/Qualitative Reasoning 

for Inclusion of Variable 
Forecast 

Years 

headways produced a 12-percent decrease in ridership and a 
14-percent decrease in revenue. 

Availability and 
Frequency of Service 
of conventional rail 
(CVR) and HSR Buses 
that connect with HSR 

The network assumes an increase (based on the State 
Rail Plan) in CVR service to HSR terminus stations from 
existing levels.  In addition, the scenarios assume that 
HSR buses will be available to transport HSR users 
to/from various locations throughout the State. 

 Sensitivity tests indicate that for VtoV using 2010 transit 
service and removing all HSR bus service would result in a 
19-percent decrease in HSR ridership and revenue. 

 While there is some uncertainty in the service levels of CVR in 
2029, PH1 service obviates the need to provide the HSR 
buses required to provide Sacramento to Los Angeles service 
under VtoV scenarios.  As a result, this variable is only 
included in the VtoV risk analyses. 

2025 

Coefficient on Transit 
Access-Egress Time/
Auto Distance Variable 

The model includes a variable that makes HSR less 
attractive for trips that require a long access or egress 
trip in relation to the time spent on HSR (the variable 
actually applies to air and CVR also).  Given that the 
revealed-preference data did not include transferring 
from CVR (or other transit modes) to HSR, we do not 
have observed data to directly estimate a coefficient for 
HSR.  Thus, the magnitude of this coefficient is 
inherently uncertain for HSR.  In addition, the 
experience from HSR in France indicates that the 
impacts of transfers may carry additional uncertainty. 

This risk also may be addressed by adjusting the 
constant associated with transit access/egress for HSR.  
However, such a treatment would implicitly assume the 
transfer penalty is identical for all transit access/egress 
modes, including short local transit access or egress.  
The apparent transfer penalty effect (and the 
corresponding uncertainty) likely varies based on overall 
trip distance and access/egress distances, and thus this 
risk is better handled within the proposed variable. 

 The French experience showed that replacing direct through 
service via CVR for trips between Paris and Grenoble with 
TGV between Paris and Lyon connecting to CVR between 
Lyon and Grenoble did not change total ridership even though 
there was a total time savings of 90 minutes.  The full trip is 
about 300 miles (Paris to Grenoble) with 60 miles from Lyon to 
Grenoble. 

 The French experience was tested by modifying the transit 
access/egress constants to reflect the 90-minute penalty for a 
trip between San Francisco and Los Angeles on a VtoV 
system.  The added penalty resulted in a 16-percent decrease 
in HSR ridership and revenue.  Note, modifying the 
access/egress constant directly is not how we accounted for 
the “French Experience” risk; however, the results of the test 
indicate the risk should be analyzed. 

 With system expansion to the PH1 system, the risk of the 
penalty decreases as more of the State has a one-seat ride. 

2025 & 2029 

Airfares Possible reasons airlines may change airfares from 
current levels include: 

 Changes in fuel or personnel costs or airport landing 
fees, 

 Air carriers’ response to HSR is unknown.  A number of years 
ago, one airline vowed to “kill” HSR in another state if it was 
built by cutting fares.  Meanwhile airlines in Europe have more 
recently embraced HSR to replace short-haul and feeder 
service to long-haul flights. 

2029 
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Model Variable 
Reasons for Considering Model Variable  

and Risk Factors Represented 
Sensitivity Results/Qualitative Reasoning 

for Inclusion of Variable 
Forecast 

Years 

 Changes in equipment or efficiency, such as 
NextGen technology, 

 Competitive response to HSR to maintain air market 
shares, and 

 Acceptance of HSR as a replacement for inefficient, 
short-haul air service. 

 HSR ridership and revenue may be sensitive to changes in 
airfares.  For year 2029 PH1, a general 30-percent increase in 
airfares produced a 6-percent increase in HSR ridership and 
an 8-percent increase in revenue, while a 30-percent 
decrease in airfares produced a 2-percent decrease in 
ridership and a 3-percent decrease in revenue. 

 Airfares are expected to have the largest variation in response 
to the introduction of HSR in direct competition to the in-state 
air market (mostly from Southern California to Northern 
California), so the risk is evaluated for the PH1 opening year 
forecast. 

Variation in the 
forecast number of 
statewide households  

The forecasted number of statewide households can 
fluctuate for a variety of reasons, such as: 

 Inherent uncertainty with population forecasts; 

 National and statewide economic cycles; 

 Impacts of natural disasters such as continuing 
draught; and 

 Changes in U.S. immigration policy. 

 There is a direct, almost one-to-one, impact of changes in 
population on changes in HSR ridership and revenue (i.e., a 1-
percent change in population results in a 1-percent change in 
ridership and revenue). 

 Assumptions regarding the geographic distribution of the 
growth also affect the final impact of the growth. 

 The uncertainty of the forecast population and households 
increases with time and has been deemed to be most 
important for the 2040 forecast. 

2040 

Auto travel times A host of risk factors might be represented through auto 
travel times: 

 Increased construction and use of managed lanes; 

 Significant road deterioration increasing congestion 
and slowing speeds; 

 Autonomous vehicles increasing capacity and, thus, 
speeds through shorter following distances; and 

 Changes in speed limits. 

 While managed lanes are most likely to be constructed in 
urban areas, construction of managed lanes that have impact 
on interregional travel might occur by 2040. 

 The risk of serious road deterioration impacting the roadway 
system by 2025 or 2029 is unlikely; the risk of significant 
deterioration is a longer-term risk. 

 Sensitivity tests indicate VtoV HSR ridership is sensitive to 
auto travel time (a 20-percent increase in auto IVTT results in 
a 14-percent increase in HSR ridership, and a 20-percent 
decrease in auto IVTT results in a 13-percent decrease in 
HSR ridership).  However, free-flow auto travel time between 
San Francisco and San Diego is approximately 6 percent 
lower than congested auto travel time (other regions showed 
lower percent differences).  Thus, the expected range in auto 
travel times is not likely to be wide enough to result in a large 

2040 
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Model Variable 
Reasons for Considering Model Variable  

and Risk Factors Represented 
Sensitivity Results/Qualitative Reasoning 

for Inclusion of Variable 
Forecast 

Years 

change in HSR ridership or revenue until there are more 
significant changes to congested times or technology changes 
that impact traffic speed. 

 Research suggests that the introduction of autonomous 
connected vehicles could decrease congestion when the 
market penetration of these vehicles reaches about 
75 percent, which could happen by year 2040. 

 Sensitivity tests indicate that HSR ridership in year 2040 PH1 
is sensitive to auto travel time (a 20% increase in auto IVTT 
results in a 10-percent increase in HSR ridership and 12-
percent increase in revenue; a 20-percent decrease in auto 
IVTT results in a 12-percent decrease in HSR ridership and 
revenue). 
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Table A.2 Risk Analysis Variables Considered but Eventually Excluded from Risk Analysis Model 

Model Variable Risk Factors Represented Sensitivity Results/Qualitative Reasoning for Exclusion of Variable 

High-Speed Rail 
Reliability 

A number of issues could affect actual HSR reliability, 
especially as the system is being opened: 

 Early implementation issues with equipment and 
operations; 

 Equipment delivery delays may reduce availability of 
backup equipment; and 

 The current assumption of 99 percent reliability may 
not be met. 

 HSR ridership and revenue are sensitive to HSR reliability.  In a test run, a 25-
percent decrease in HSR reliability (from 99 percent on-time arrivals to 
75 percent) produced a 21-percent decrease in ridership and a 21-percent 
decrease in revenue. 

 For Caltrain, which is a California CVR service that has close to dedicated right-
of-way, 92.5 percent of trains have arrived within 5 minutes of scheduled time. 

 The capitol corridor, which is less than 550 miles is on-time, within 10 minutes of 
scheduled time, 93 percent of the time.  20 percent is due to freight interference 
(which would not be an issue for HSR).  The San Joaquin, which is <550 miles is 
on-time, within 10 minutes of scheduled time, 74.2 percent of the time.  About 
50 percent of delays are due to issues with freight interference. 

 The above statistics use on-time performance of 5-10 minutes, rather than 
15 minutes, suggesting that CVR percentage of on-time performance based on 
15-minute arrival could be significantly higher. 

 International HSR has a strong history of being very reliable.  Dedicated HSR 
track will inherently make HSR much more reliable than CVR. 

 Reliability was eliminated as a risk variable given that the range in on-time 
performance was very narrow.  Based on sensitivity tests, potential realistic 
values for on-time performance for HSR (based on California CVR and 
international HSR experience) would not have a significant enough impact on 
ridership and revenue to be included. 
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Model Variable Risk Factors Represented Sensitivity Results/Qualitative Reasoning for Exclusion of Variable 

Parking cost and 
location at HSR 
stations 

Station planning currently is underway for both the 
stations and surrounding areas.  The model assumes 
that parking will be provided with parking costs matching 
surrounding market conditions.  These assumptions may 
change due to: 

 Insufficient land availability for parking around the 
HSR station; 

 Parking “yield” control; 

 Environmental concerns/neighborhood response; 

 Changes in planned land use development patterns; 
and 

 Higher amount of off-station parking requiring longer 
access time to reach station 

 A sensitivity test increased parking cost at all HSR stations by 50 percent, and 
also adjusted the park-and-ride access constant to reflect a 15-minute increase in 
terminal time (from outlying parking to the terminal).  These adjustments resulted 
in a decrease in HSR ridership and revenue by 11 percent. 

 Two other sensitivity tests focused only on adjusting HSR parking cost.  A 50-
percent increase in HSR parking costs resulted in a 5-percent decrease in HSR 
ridership.  A 50-percent decrease in HSR parking costs resulted in a 5-percent 
increase in HSR ridership.  

 Parking cost was eliminated as a risk variable given that in initial regression 
analysis testing, this variable had only a small contribution to uncertainty in 
ridership and revenue forecasts compared to other variables. 

Types and 
numbers of jobs 
available within a 
region or statewide 

 Development of new employment centers or 
industries in a region; and 

 Loss of employment due to recession or natural 
disaster. 

 Sensitivity test indicates VtoV HSR ridership is not very sensitive to change in 
employment distribution.  A ±20-percent change in Leisure/Hospitality 
employment in the San Joaquin Valley produced a ±1-percent change in HSR 
ridership and revenue. 

 The numbers and types of jobs have only an indirect effect on main mode choice 
through changes in destination choice. 

 Impact of this variable can be taken into account through widening of the range 
for the Trip Frequency constant. 

Changes in spatial 
distribution of 
households and 
employment within 
metropolitan 
regions 

 Transit-oriented development around HSR stations; 
and 

 Changes in major attractions in California (such as 
Disneyland). 

 Changes in statewide numbers and locations of households are being considered 
in the risk analysis; this variable relates to very specific development patterns. 

 Deviations from projected land uses in 2025 and 2029 are unlikely to be sufficient 
to cause significant change in ridership in those scenarios in year 2040; 
sensitivity to types and numbers of jobs available within a region was minimal. 

 Temporary closure of Disneyland will not affect the VtoV scenario to the same 
extent as the PH1 scenario.  Sensitivity tests on the PH1 scenario showed very 
low sensitivity of HSR revenue to opening and closing of a “Disney-like” special 
generator. 
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Model Variable Risk Factors Represented Sensitivity Results/Qualitative Reasoning for Exclusion of Variable 

Airline service 
frequency 

Possible reasons airlines may change service frequency 
or even markets served from current levels include: 

 Changes in fuel or personnel costs or airport landing 
fees at specific airports; 

 Changes in equipment or efficiency, such as 
introduction of NextGen allowing for more air traffic at 
an airport; 

 Competitive response to HSR to maintain air market 
shares; and 

 Acceptance of HSR as a replacement for inefficient, 
short-haul air service. 

 HSR ridership and revenue are not very sensitive to changes in the frequency of 
air service.  In sensitivity tests, a general 50-percent increase in air service 
headways (time between flights) produced a 2-percent increase in HSR ridership 
and a 3-percent increase in revenue, while a 50-percent decrease in headways 
between flights produced a 3-percent decrease in ridership and a 4-percent 
decrease in revenue. 

Airline travel time Airline travel time may change from current levels for the 
following reasons: 

 NextGen aviation system introduction decreasing 
travel time; 

 Reliability of airlines could significantly improve 
decreasing the need for travel time padding; and 

 More or less nonstop service could be introduced 
between cities. 

 NextGen implementation by 2029 is unlikely to change relative competitiveness in 
the short-haul air market within which HSR competes. 

 Sensitivity tests indicate that VtoV HSR ridership is not very sensitive to changes 
in air travel time.  A 20-percent decrease in air travel time produced only a 1-
percent decrease in HSR ridership and revenue. 

 Sensitivity tests show very low sensitivity of air travel time on HSR revenue.  For 
year 2040 PH1, increasing air travel time by 20 percent increased HSR revenue 
by 0 percent, and decreasing air travel time by 30 percent decreased HSR 
revenue by 2 percent. 

Auto mode 
characteristics 
(auto mode 
constant) 

 Auto becomes more attractive compared to HSR due 
to autonomous vehicles 

 The HSR constant measures the unexplained variation in the attractiveness of 
HSR in relation to the auto mode.  Thus, the uncertainty surrounding changes in 
the perception of the auto mode already are captured via the HSR constant risk 
variable. 
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Model Variable Risk Factors Represented Sensitivity Results/Qualitative Reasoning for Exclusion of Variable 

Auto ownership This variable could reflect a number of risk factors: 

 Changes in the economy such as a prolonged 
recession; 

 Changes in travelers’ perceptions of the auto; 

 Increase or decrease in the cost of auto ownership 
due to changes in auto manufacturing; and 

 Demographic changes (increased numbers of seniors 
in the population with less likelihood of auto 
ownership). 

 While a number of the risk factors listed might take place, the overall change is 
likely to be gradual. 

 In a test run, 0 car households were increased by 20 percent with a 
commensurate decrease in 2+ car households.  While the HSR ridership 
increased by 8 percent and revenue by 7 percent, the shift in car ownership 
represented is unlikely to occur by 2029. 

 The 7-year period from 2006 to 2013 only included a 5-percent increase in 0 car 
households’ share of total households with minor changes in 1-car households.  
There does not appear to be enough uncertainty in this variable to warrant 
inclusion. 

 For year 2040, this risk factor is captured via the auto operating cost, as 
explained in Appendix J. 

Household Income This variable could reflect a number of risk factors: 

 Changes in the economy such as a prolonged 
recession; 

 Disproportionate in- or out-migration by income 
groups; and 

 Demographic changes (increased numbers of 
retirees on fixed incomes). 

 In a test run, low-income households were increased by 10 percent with a 
commensurate decrease in high-income households (Note:  This was coupled 
with a decrease in number of household workers.).  The HSR ridership and 
revenue decreased by 2 percent. 

 Impact of this variable can be taken into account through widening of the range 
for the Trip Frequency constant. 
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Table A.3 Risk Factors Excluded from Risk Analysis for All Model Years 
and Operating Phases 

Risk Factor Reasoning for Exclusion of Variable 

Earthquake recovery period 
and other natural disasters 

 Typically, ridership (traffic) and revenue studies will assume no natural 
disasters. 

 Better place for modeling this risk would be in financial model. 

Codeshare with airlines for 
international/longer trips 

 The BPM-V3 model does not focus on this type of travel. 

HSR used for freight transport  Current policy framework for the system does not envision freight 
usage. 

Labor relations/chance of 
strike/service disruptions risk 

 Risk is impossible to model in BPM-V3 model without broad 
speculation. 

 Better place for modeling risk would be in financial model. 

Hyperloop  This mode currently is a speculative and unproven technology. 
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B. High-Speed Rail Constants 

The high-speed rail (HSR) constant for each of the four trip purposes (i.e., business, 
commute, recreation, and other) is composed of two components:  1) unexplained 
variation, and 2) terminal and wait time.  The unexplained variation component 
represents the desirability to choose HSR that is not captured directly by the 
system variables included in the model.  Terminal time is the out-of-vehicle time 
spent traveling from the point of departure from the access mode to the train 
platform.  Wait time is the out-of-vehicle time spent waiting on the platform for 
the train to arrive and the time spent waiting for the train to leave the platform 
once boarded.  The risks associated with each of the components are different and 
should be specified separately for the Monte Carlo experiments, as discussed in 
the next sections. 

For full model risk analysis runs, terminal and wait time are included with the 
unexplained variation within the HSR constant.  For Monte Carlo risk analysis, 
each component of the HSR constant is considered as a separate risk variable with 
completely independent distributions.  The former allows for estimation of a 
single regression model parameter, and does not require an additional risk 
variable in the experimental design framework.  The latter allows for an 
understanding of the terminal/wait time’s effect on ridership and revenue 
uncertainty independent from the HSR constant’s effect on ridership and revenue 
uncertainty. 

B.1 UNEXPLAINED VARIATION 
An important part of any mode choice model is a modal constant that explains 
factors that are not quantifiable by the stated-preference (SP) and revealed-
preference (RP) surveys.  When dealing with existing modes, such as auto, 
conventional rail (CVR), and air, we can calibrate this constant by comparing the 
model outcomes to observed behavior.  With a new mode like HSR in the 
California/U.S., this is impossible, and thus there is uncertainty in the asserted 
constant. 

The asserted HSR constant value comes from averaging the values taken from two 
approaches.  The first approach considered offsets from air and CVR constants 
derived from 2013 estimated SP constants.  The second approach averaged the 
calibrated air and CVR constants used in model application.  Details of the 
derivation of the HSR constant are documented in California High-Speed Rail 
Ridership and Revenue Model Business Plan Model-Version 3 Model Documentation.  
Both approaches were reasonable approaches to arrive at an HSR constant, but this 
analysis takes the average of these values.  Since they are both considered 
reasonable approaches unto themselves, the values derived from each approach 
must fall within the uncertainty range considered in the risk analysis. 
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In order to better understand the uncertainty associated with the HSR constant, 
additional analyses of the 2013 RP/SP survey data was undertaken by performing 
additional mode choice model estimation using additional variables that were not 
included in the BPM-V3 model.  There variables included demographic 
characteristics, trip characteristics, and attitudinal questions, as shown in 
Table B.1. 

Table B.1 Additional Variables Considered in Analysis of HSR Constant 

Demographic 
Characteristics Trip Characteristics Attitudinal Questions 

Gender Car not available for trip Respondent’s stated likelihood of ever using HSR 
service in the future. 

Age Car needed at destination Respondent’s perceived economic value of HSR to the 
State of California. 

Worker Status Duration of stay Respondent’s perceived environmental value of HSR to 
the State of California. 

Highest education 
level achieved 

 Respondent’s support/opposition level to HSR. 

Schedule flexibility  Respondent’s familiarity with conventional Amtrak, Acela 
services in the Northeast, and HSR in foreign countries. 

 

Using the best model with these new variables, the HSR constant was recalibrated, 
assuming the same calibrated CVR and air constants.12  The asserted HSR 
constants under this new model were nearly identical to those of the original 
model, suggesting that even after controlling for all these additional factors, the 
constants we would assert for the HSR mode would have been about the same in 
relation to the calibrated air and CVR constants.  Several variables were found to 
be highly significant, and with expected signs and appropriate magnitudes.  
However, on their own, these coefficients do not say much about the size or 
magnitude of the HSR constant, or its relation with CVR or air constants. 

Given that this additional model estimation did not provide additional insight into 
the uncertainty of the HSR constant, we had no basis to narrow the range in 
uncertainty from the range assumed in the 2014 Business Plan Risk Analysis.  The 
2014 Business Plan Risk Analysis uncertainty range was based on the assumption 
that the CVR constant represents an absolute worst case lower bound since there 
is no apparent reason that any of the unobserved characteristics for the HSR mode 
should be any worse than those for the CVR mode.  In addition, there is no 
evidence that the uncertainty range is asymmetrical.  Moreover, the asserted 
baseline constants come from averaging two reasonable approaches, as outlined 
above; both of which are equidistant from the asserted value and by extension, 

                                                      

12 These constants would change under a different model specification, but this allowed for 
direct comparison of the resulting HSR constant to those of the original model. 
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should have the same likelihood of occurrence in the constant distribution.  Thus, 
symmetry is assumed in the constant distribution.  If symmetry is assumed, then 
the absolute minimum bound of the CVR constant also introduces an absolute 
maximum bound. 

Each trip purpose (i.e., business, commute, recreation/other) is treated 
individually as separate risk factors since the difference between CVR and HSR 
base constants is different for each purpose, and thus, the CVR lower bound is 
different for each purpose.  In addition, some parts of the uncertainty captured in 
the constants are considered to be likely correlated amongst trip purposes (i.e., 
100 percent correlation), while others would be unrelated between purposes (i.e., 
0 percent correlation).  A 50-percent correlation between the HSR constant trip 
purposes was assumed to capture that a portion of the constants would be 
correlated, but not necessarily every aspect of them. 

For the Monte Carlo simulation, a PERT is specified rather than a triangular 
distribution, because the CVR constant represents an absolute minimum possible 
value for the HSR constant, essentially a tail event.  Since the triangular 
distribution does not have tails, it would overstate the likelihood of observing a 
very unlikely tail event. 

B.2 TERMINAL AND WAIT TIME 

Terminal Time 

Terminal time is the out-of-vehicle time spent traveling from the point of 
departure from the access mode to the train platform.  It currently is assumed that 
terminal times for CVR and air are 3 and 22 minutes, respectively; and for HSR, 
10 minutes is assumed.  A lower bound based on the CVR value is considered, but 
given that the size of HSR stations will be larger than many CVR stations, a lower 
bound for the risk analysis simulations of 5 minutes is more appropriate. 

The upper bound on terminal time is based on the air terminal time.  An upper 
bound of 22 minutes is used for HSR terminal time, which is identical to the 
terminal time assumed at airports.  This conservative upper bound assumes that 
the time it takes to traverse an HSR station is similar to airports, and that HSR 
travelers will need to undergo security similar to current Transportation Security 
Administration (TSA) security at airports. 

Wait Time 

Wait time is the out-of-vehicle time spent waiting on the platform for the train to 
arrive and the time spent waiting for the train to leave the platform once boarded.  
The base wait and terminal times for HSR are set to 15 and 10 minutes, 
respectively.  These were the terminal and wait times that were stated in both the 
2005 and 2012/2013 RP/SP survey.  Wait times are often related to service 
headways, except when headways grow too long.  For long headways, people will 
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coordinate arrivals to coincide with train departure.  For instance, Fan and 
Machemehl (2009) found that when headways exceeded 38 minutes, bus arrivals 
became fully coordinated (that is, no one arrived randomly).  They also found that 
for headways under 11 minutes, arrivals became perfectly random.  Assuming 
wholly random arrivals with headways no greater than 60 minutes for HSR, an 
absolute upper bound on average wait time would be 30 minutes (one-half of 
headway).  However, based on the evidence, at 60 minutes, there would no longer 
be random arrivals.  Therefore, an upper limit of 25 minutes is reasonable, as it 
represents the average maximum amount of time individuals would wait for an 
HSR train given nonrandom arrivals. 

HSR headways also are at least 30 minutes in our current setup.  With random 
arrivals, this would suggest an average wait time of 15 minutes, which is exactly 
what currently is used by the model.  If it is assumed that with 30-minute 
headways, 25 percent of travelers have random arrivals with 15-minute average 
waits, 50 percent of travelers have coordinated arrivals with 10-minute average 
waits, and 25 percent of travelers have coordinated arrivals with 5-minute average 
waits; the overall average wait time is 10 minutes.  Thus, 10 minutes is used as a 
lower bound on the distribution for risk analysis. 

The wait time and terminal time risk variables for each trip purpose are 
100 percent correlated with each other, since factors that contribute to shorter or 
longer terminal and wait times would not differ by trip purpose.  The risk variable 
has a triangular distribution since the ranges do not reflect extreme or highly 
unlikely events. 
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C. Trip Frequency Constants 

The trip frequency constants include the unexplained variation in the propensity 
of households to make long-distance trips within California.  Within our risk 
analysis model, variation in the trip frequency constants is used to reflect the effect 
of the state of the economy on the proclivity of households to take high-speed rail 
(HSR).  Instead of including distributions of household and employment levels 
directly as risk variables in the risk analysis model to account for changes in the 
state of the economy, risks associated with the state of the economy are accounted 
for within the trip frequency constant risk variable.  The risks associated with each 
of the components are different and should be specified separately for the Monte 
Carlo experiments, as discussed in the next sections. 

C.1 UNEXPLAINED VARIATION 
The trip frequency model was calibrated to 2010 conditions and applied using 
forecast year socioeconomic data and networks.  The changes in the demographic 
composition and the networks in the modeled forecast years result in an increase 
in annual long-distance trip rates compared to the year 2010 trip rates.  This 
increase in annual long-distance trip rates is consistent with findings from the 1995 
American Traveler Survey and the 2001 National Household Travel Survey, which 
found a 21-percent increase in annual round trips per household over the six-year 
period from 10.15 annual trips per household to 12.32 annual trips per 
household.13  This occurred even though the economic conditions in 2001 were not 
as good as in 1995 due to the “dot-com” bust.  In addition, since some surveys were 
collected after 9/11, the 2001 National Household Travel Survey (NHTS) trip rates 
may have been affected. 

Annual long-distance trip rates over time are relatively stable and independent of 
disruptions caused by economic conditions, changes in technology, and changes 
in traveler perceptions and behavior.  Information and communication 
technologies have been found to be a complement, and even be an incentive for, 
business trips.14  During recessions and hard economic times, research has found 
that households choose to make more leisure trips closer to home for shorter 

                                                      

13 Source:  NCHRP Report 735. 

14 Aguilera, Anne (2008).  Business Travel and Mobile Workers.  Transportation Research 
Part A:  Policy and Practice, Volume 42, Issue 8, October 2008, pages 1109 to 1116. 

 Mokhtarian, Patricia (2008).  If Telecommunication is such a good substitute for travel, 
why does congestion continue to get worse?  Transportation Letters, Volume 1, Issue 1, 
January 2009, pages 1 to 17. 
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periods of time, rather than taking longer trips that involve more days away from 
home.15  As the baby boomers continue to move into retirement age, leisure travel 
also may increase due to fewer family obligations, higher incomes compared to 
their younger peers, and fewer necessary expenditures.16  Research suggests that, 
if anything, long-distance travel may increase with changing technologies and 
demographics. 

Since changes in economic conditions, technologies, and traveler perceptions and 
behaviors are not hypothesized as a significant risk to annual long-distance trip 
rates, the trip frequency constant risk factor range is based on the range seen in 
forecasted annual long-distance trip rates produced by the model.  The most likely 
value for each forecast year is the calibrated constant.  The minimum value of the 
trip frequency constants is specified, such that for year 2040, the trip frequency 
constants produce average trip rates equal to the 2010 rates by trip purpose.  The 
maximum value of the trip frequency constant is specified to mirror the deviations 
from the calibrated constants for the minimum values (i.e., symmetry of the 
constant offsets is assumed). 

For each trip purpose (i.e., business/commute, recreation/other), some parts of 
the uncertainty captured in the constants are considered likely to be correlated 
amongst trip purposes (i.e., 100 percent correlation), while others would be 
unrelated between purposes (i.e., 0 percent correlation).  A 50-percent correlation 
between the trip frequency constant trip purposes was assumed to capture that a 
portion of the constants’ uncertainty would be correlated, but not necessarily 
every aspect of it. 

For the Monte Carlo simulation, a PERT is specified rather than a triangular 
distribution, because the minimum and maximum values represent unlikely 
events.  Since the triangular distribution does not have tails, it would overstate the 
likelihood of observing a very unlikely tail event. 

Table C.1 shows the approximate results in terms of annual long-distance round 
trips per capita resulting from the specification of the constant ranges to account 
for unexplained variation.  Note that symmetry of the constant offsets does not 
produce symmetry of the implied trip rates.  This is due to the trip frequency 
choice model being specified as a logit model with choices of no long-distance trip, 
one long-distance trip traveling alone, or one long-distance trip traveling in a 
group on a given day.  Since the base shares for each of these choices are very low 
(e.g., ~0.2 percent), the model is more sensitive to the constants on the high end 
than the low end. 

                                                      

15 Lamonda, Jeff, C. Bhat (2011).  A study of visitors’ leisure travel behavior in the northwest 
territories of Canada.  Transportation Letters, Volume 3, Issue 1, January 2011, pages 1 
to 19. 

16 Lamonda, Jeff, C. Bhat, and D. Hensher.  An annual time use model for domestic vacation 
travel.  Journal of Choice Modeling, Volume 1, Issue 1, 2008, pages 70 to 97. 
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Table C.1 Unexplained Variation of Trip Frequency Constants – Implied Annual Long-
Distance Round Trips Per Capita 

Purpose 

Implied Annual Long-Distance 
Trips per Capita for 2025 

Implied Annual Long-Distance 
Trips per Capita for 2029 

Implied Annual Long-Distance 
Trips per Capita for 2040 

Minimum 
Most 
Likely Maximum Minimum 

Most 
Likely Maximum Minimum 

Most 
Likely Maximum 

Business/
Commute 

1.64 2.16 2.85 1.67 2.20 2.90 1.86 2.45 3.23 

Recreation/
Other 

5.10 5.76 6.50 5.18 5.85 6.60 5.52 6.23 7.03 

Total 6.74 7.92 9.35 6.85 8.05 9.50 7.38 8.68 10.26 

 

C.2 ECONOMIC CYCLE 
Economic cycles potentially impact several different variables in the model, 
including the number of workers, household income levels, and overall trip 
making.  However, incorporating each of these risk factors separately is infeasible.  
These impacts are interrelated and can be accounted for jointly.  Sensitivity tests 
have shown that the economic-cycle variations can be reasonably accounted for by 
changes in trip frequencies.  Thus, the effect of economic cycles on HSR ridership 
and revenue is accounted for as a separate risk component in the trip frequency 
constants. 

In order to determine the appropriate range in the trip frequency constant, changes 
in employment and income need to be translated into changes in the trip frequency 
constants.  The primary driver for long-distance trip-making in the BPM-V3 model 
is the number of households within the State.  Households are stratified into 
99 different groups based on 4 household size groups, 3 auto ownership groups, 
3 number of workers groups, and 3 income groups.  The 4 x 3 x 3 x 3 groups result 
in 108 strata; 9 of which are illogical (i.e., 2 or more worker, 1 person households 
for the 9 groups defined by auto ownership and income).  Total trips are based on 
the modeled trip frequency and the numbers of households in the State. 

Employment is the metric used to define the economic cycles for the State.  
Employment has a secondary impact on trip frequency and a more direct impact 
on destination choice.  However, the employment levels also can be used to more 
directly impact the total numbers of trips through relationships with households 
by numbers of workers and households by income group.  For a given forecast of 
households, the numbers of 0, 1, and 2+ worker households should vary so that 
total workers in the State track the total employment.  Likewise, in a recession, it 
should be expected that the number of low-income households should increase at 
the expense of middle- and high-income households and, likewise, that the 



Draft 2016 California High-Speed Rail Business Plan Ridership and Revenue Risk Analysis 

C-4  Cambridge Systematics, Inc. 

number of middle-income households might increase at the expense of high-
income households. 

Suggested low and high employment levels representing the economic cycles are 
based on historic observations through 2014.  The Great recession produced a -2.8-
percent Compound Annual Growth Rate (CAGR) for employment in California 
between 2007 and 2010.  Thus, for the low economic growth scenario, annual 
declines of 3.0 percent per year for the three years preceding the forecast year were 
assumed, with those decline being applied to the new “Low Scenario” statewide 
control total, as described in detail in Appendix G.  The period from 1994 to 2000 
was the high water period for job growth in California with a 3.0-percent CAGR 
for five years.  Thus, for the high economic growth scenarios, annual increases of 
3.0 percent per year for the five years preceding the forecast year were assumed, 
with the increase applied to the new “High Scenario” statewide control total. 

It was assumed that the low employment forecast would result in a commensurate 
decrease in the number of household workers.  This was accomplished through 
increasing in the number of 0 and 1 worker households, and decreasing 2+ worker 
households.  The above changes could result from some households moving from 
2+ worker households to 1 worker households, and 1 worker households moving 
to 0 worker households to reflect the increasing unemployment.  It was assumed 
that the increase in 0 worker households would result in an increase in low-income 
households and a commensurate decrease in high-income households.  The 
changes could result from some households moving from high-income 
households to middle-income households, and middle-income households 
moving to low-income households to reflect the increasing unemployment or 
underemployment. 

It was assumed that the high employment forecasts would result in a 
commensurate increase in the number of household workers.  This was 
accomplished through decreases in the number of 0 worker household and 
1 worker households, and increases in 2+ worker households to maintain the 
statewide control total of households.  Low-income households were assumed to 
decrease and middle-income households were assumed to increase.  Table C.2 
shows examples of the resulting joint distributions of households by number of 
workers and income group and the resulting factors for the base, low, and high 
employment scenarios. 

In order to determine the compounding effects of income levels and number of 
workers on HSR long-distance trips per capita, the full model was run for each 
forecast year for the low and high economic growth socioeconomic datasets.  The 
resulting trip rates for year 2025, 2029, and 2040 are shown in Table C.3. 

  



Draft 2016 California High-Speed Rail Business Plan Ridership and Revenue Risk Analysis 

Cambridge Systematics, Inc. C-5 

Table C.2 Workers per Household by Income Group for Most Likely, 
Minimum, and Maximum Changes in Employment for 2040 

Workers/
Household 

Income Group 

Total Low Middle High 

Base Scenario 

0 17% 9% 6% 32% 

1 9% 12% 12% 33% 

2+ 3% 9% 23% 35% 

Total 29% 30% 41% 100% 

Minimum Economic Growth Scenario 

0 19% 11% 6% 36% 

1 10% 14% 12% 36% 

2+ 2% 8% 18% 28% 

Total 31% 33% 36% 100% 

Maximum Economic Growth Scenario 

0 14% 8% 6% 28% 

1 7% 11% 13% 31% 

2+ 2% 10% 29% 41% 

Total 23% 29% 48% 100% 

 

Table C.3 Annual Long-Distance HSR Trips per Capita for Most Likely, 
Minimum, and Maximum Employment Scenarios 

Purpose 

Base 
Scenario 

Minimum Employment 
Scenario 

Maximum Employment 
Scenario 

Trip Rates Trip Rates 
% Change 
from Base Trip Rates 

% Change  
from Base 

Year 2025      

Business/Commute 0.037 0.029 -21.6% 0.044 18.9% 

Recreation/Other 0.047 0.043 -8.5% 0.049 4.3% 

Total 0.084 0.073 -13.1% 0.093 10.7% 

Year 2029      

Business/Commute 0.165 0.136 -17.6% 0.207 25.5% 

Recreation/Other 0.243 0.227 -6.6% 0.263 8.2% 

Total 0.408 0.363 -11.2% 0.470 14.9% 

Year 2040      

Business/Commute 0.182 0.143 -21.4% 0.224 23.1% 

Recreation/Other 0.259 0.238 -8.1% 0.278 7.3% 

Total 0.440 0.381 -13.4% 0.502 14.1% 
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Since the risk analysis is focusing on HSR revenue and ridership, the per capita 
HSR trip rates shown in Table C.3 were used to factor the overall base trip rates 
(e.g., estimated overall trip rate x estimated low HSR trip rate/estimated base HSR 
trip rate).  This effort produced alternate ranges for the overall trip rates that, in 
effect, included the compounding impacts of the input socioeconomic data and the 
transportation networks on HSR ridership.  Table C.4 shows the ranges that result 
based on total trips and based on the adjustment for HSR shares.  Due to the 
impacts of the various input data on destination choice and mode choice in the 
BPM-V3, the minimum and maximum values for the HSR adjusted rates could be 
different than the overall trip rates resulting from the application of the BPM-V3 
(i.e., total forecast long-distance trips from the trip frequency model/total 
population).  For example, the maximum values for the HSR adjusted trips for 
Business/Commute for all three forecast years are higher than the unadjusted 
maximum rates.  The trip rate ranges are used to specify the ranges of trip 
frequency model constants for the full model runs that produce data for the 
calibration of regression models for the risk analysis.  Thus, it is reasonable to use 
the minima and maxima for the ranges (as shown in bold italics in Table C.4).  
Table C.5 shows the range of annual long-distance round trips per capita resulting 
along with the constant offsets. 

Table C.4 Range in Annual Total Round Trips per Capita Based on Total 
Trips and Based on Adjustment for HSR Shares 

Model 
Year Purpose 

Ranges Based on Total Trips 
Ranges Based on Adjustment  

for HSR Trips 

Minimum 
Most 
Likely Maximum Minimum 

Most 
Likely Maximum 

2025 Business/Commute 1.76 2.16 2.50 1.71 2.16 2.54 

Recreation/Other 5.31 5.76 6.15 5.37 5.76 6.06 

Total 7.07 7.92 8.65 7.08 7.92 8.60 

2029 Business/Commute 1.85 2.20 2.68 1.80 2.20 2.75 

Recreation/Other 5.43 5.85 6.36 5.47 5.85 6.32 

Total 7.28 8.05 9.04 7.27 8.05 9.07 

2040 Business/Commute 1.98 2.44 2.94 1.92 2.44 3.02 

Recreation/Other 5.72 6.22 6.73 5.72 6.22 6.68 

Total 7.70 8.66 9.67 7.64 8.66 9.70 
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Table C.5 Minimum, Most Likely, and Maximum Economic-Cycle Trip 
Frequency Constant Offsets and Implied Trip Rates 

Model 
Year Purpose 

Constant Offsets 
(From Calibrated Constants) 

Implied Trip Rates 
After Applying Offsets 

Minimum 
Most 
Likely Maximum Minimum 

Most 
Likely Maximum 

2025 Business/Commute -0.233 0 0.165 1.71 2.16 2.54 

Recreation/Other -0.070 0 0.052 5.37 5.76 6.06 

Total – – – 7.08 7.92 8.60 

2029 Business/Commute -0.201 0 0.224 1.80 2.20 2.75 

Recreation/Other -0.068 0 0.078 5.47 5.85 6.32 

Total – – – 7.27 8.05 9.07 

2040 Business/Commute -0.246 0 0.209 1.92 2.44 3.02 

Recreation/Other -0.087 0 0.071 5.72 6.22 6.68 

Total – – – 7.64 8.66 9.70 

 

C.3 TRIP FREQUENCY CONSTANT RANGES 
For full model risk analysis runs, economic-cycle effects are included with the 
unexplained variation in the range specified for the trip frequency constant.  The 
range of constant offsets for the uncertainty analysis is directly related to the 
calibrated constants.  The range of constant offsets for impacts of economic cycles 
provides proxies for the actual economic-cycle risk variable being considered.  
This approach provides a useful method for specifying a continuous range of 
outcomes rather than developing multiple input socioeconomic datasets.  The 
offsets must be combined to represent the full range of possible outcomes for the 
development of the risk analysis regression equations.  The constant offsets for the 
Unexplained Variation and Economic Cycle are added and the implied range of 
trip rates was estimated, as shown in Table C.6. 
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Table C.6 Range of Trip Frequency Constant Offsets and Implied Trip 
Rates for Full Model Runs 

Model 
Year Purpose 

Composite Trip Frequency Model 
Constant Offsets 

Implied Trip Rates Based on 
Composite Constant Offsets 

Minimum Most 
Likely 

Maximum Minimum Most 
Likely 

Maximum 

2025 Business/Commute -0.511 0 0.443 1.30 2.16 3.35 

Recreation/Other -0.193 0 0.175 4.76 5.76 6.84 

Total – – – 6.06 7.92 10.19 

2029 Business/Commute -0.479 0 0.502 1.37 2.20 3.62 

Recreation/Other -0.191 0 0.201 4.84 5.85 7.13 

Total – – – 6.21 8.05 10.75 

2040 Business/Commute -0.524 0 0.487 1.45 2.44 3.97 

Recreation/Other -0.210 0 0.194 5.06 6.22 7.54 

Total – – – 6.51 8.66 11.51 

 

For Monte Carlo risk analysis, each component of the trip frequency constant is 
considered as a separate risk variable with completely independent distributions 
(i.e., 0 percent correlation).  About 50-percent correlation is assumed between the 
business/commute and recreation/other risk components for unexplained 
variation.  Perfect correlation is assumed between economic-cycle risk components 
for business/commute and recreation/other purposes. 
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D. Auto Operating Cost 

The approach for forecasting auto operating costs for the 2016 Draft Business Plan 
is consistent with the methodology used for the 2014 Business Plan, with updates 
to recognize the following: 

 The most current motor gasoline price projections based on EIA’s 2015 Annual 
Energy Outlook (AEO); 

 Revised non-gasoline operating costs; 

 The most current fuel efficiency projections of the on-the road vehicle fleet; and 

 Effects of Cap and Trade rules in motor fuel prices and potential effects of an 
increase in the Federal excise tax rate. 

The auto operating costs documented in this appendix are for privately owned 
vehicles.  Appendix H provides background on auto operating costs for 
autonomous and shared use vehicles and their impacts on overall auto operating 
costs as used for the 2040 Phase 1 – Blended risk analysis. 

The following sequential steps were undertaken to calculate the auto operating 
cost: 

1. Project retail fuel prices in California; 

2. Adjust additional fees and charges based on two scenarios: 

a. Cap and Trade, and 

b. Potential increase in Federal excise tax; 

3. Project fuel economy of the entire “on the road” fleet; 

4. Estimate nonfuel costs; and 

5. Combine fuel operating cost with nonfuel operating cost. 

D.1 FUEL PRICES 
Historically, California retail gasoline prices have been higher than the U.S. 
average.  As shown in Figure D.1, from year 2000 to 2014, the overall average for 
California prices was fairly consistently 11 percent higher than the U.S. average. 
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Figure D.1 Annual Retail Gasoline Prices 

 

Source: U.S. Energy Information Administration:  Annual All Grades All Formulations Retail Gasoline Prices 
http://www.eia.gov/dnav/pet/pet_pri_gnd_dcus_nus_m.htm. 

The U.S. Energy Information Administration (EIA) forecasts motor gasoline prices 
through 2040 for three different scenarios in its 2015 Annual Energy Outlook 
(AEO):  reference, low, and high.  The projections were increased by 11 percent to 
develop projections of retail gas prices in California, as shown in Figure D.2. 

Figure D.2 Low, Reference, and High California Retail Gas Price 

 

Source: EIA, AEO2015 National Energy Modeling System. 
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D.2 CAP AND TRADE EFFECTS ON FUEL PRICES 
On January 1, 2015, the cap-and-trade rules came into effect for the fuel sector in 
California.  The California Air Resources Board estimated in 2010 that gasoline 
price changes in 2020 could range between 4 percent and 19 percent due to Cap 
and Trade rules.17  The exact impact of Cap and Trade on fuel prices is unknown 
and could change over time based on the industry response to reduce emissions.  
Cap and Trade scenarios assumed the following impacts: 

 Low scenario would assume a repeal of the Cap and Trade rules and, thus, no 
impact from Cap and Trade (i.e., 0 percent increase in retail gasoline price); 

 High scenario would assume the maximum predicted effect of Cap and Trade 
(i.e., 19 percent increase in retail gasoline price); and 

 Most likely scenario would assume the midpoint impact of Cap and Trade 
between the maximum and minimum (i.e., 9.5-percent increase in retail 
gasoline price). 

Figure D.3 shows the low, most likely, and high total California fuel cost 
projections, including these offsets for Cap and Trade. 

Figure D.3 Cap and Trade Scenario Total California Retail Fuel Price 

 

 

                                                      

17 California Air Resource Board, 
http://www.arb.ca.gov/regact/2010/capandtrade10/capv4appn.pdf. 

$0.00

$1.00

$2.00

$3.00

$4.00

$5.00

$6.00

$7.00

$8.00

$9.00

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

20
24

20
25

20
26

20
27

20
28

20
29

20
30

20
31

20
32

20
33

20
34

20
35

20
36

20
37

20
38

20
39

20
40

C
al

if
o

rn
ia

 R
et

ai
l G

as
 P

ri
ce

s 
w

it
h

 C
ap

 a
n

d
  T

ra
d

e 
(2

01
5 

D
o

lla
r)

Forecast Year

Low Price Most Likely High Price



Draft 2016 California High-Speed Rail Business Plan Ridership and Revenue Risk Analysis 

D-4  Cambridge Systematics, Inc. 

D.3 FEDERAL FUEL TAX INCREASE SCENARIO 
For the maximum auto operating cost scenario only, it is assumed that the Federal 
Government introduces a bill that links the Federal fuel tax to the Consumer Price 
Index.  Today, the Federal Fuel Tax is $0.184 per gallon.  If the Federal Fuel Tax is 
increased based on adjustment for Consumer Price Index (CPI) changes, which are 
assumed at 2.4 percent per year increase retroactive to year 1993 (i.e., last gas tax 
increase), then the Federal Fuel Tax would be $0.302 per gallon today.  This results 
in the maximum scenario adding an additional $0.12 tax to the Fuel Cost projection 
(i.e., $0.30 – $0.18 = $0.12). 

D.4 PROJECTIONS OF FUEL ECONOMY OF LIGHT-DUTY 

VEHICLES 
U.S. National Average shown in Figure D.4 is used for the assumptions of Fuel 
Economy projections in California.18  For calculating the minimum auto operating 
cost, the high miles per gallon (MPG) forecast was coupled with the Low gasoline 
price forecast; and for the maximum auto operating cost, the low MPG forecast 
was coupled with the high gasoline price forecast. 

Figure D.4 National Average Fuel Economy Forecasts 

 

 

                                                      

18 U.S. Energy Information Association (2015).  Annual Energy Outlook 2015 with 
projections to 2040.  DOE/EIA-0383 (2015), April 2015. 
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D.5 NONFUEL OPERATING VEHICLE COST 
The Bureau of Transportation Statistics (BTS) publishes historical average nonfuel 
auto operating costs.  The total cost of owning and operating an automobile 
include fuel, Maintenance, Tires, insurance, license, registration and taxes, 
depreciation, and finance.  Figure D.5 illustrates the nonfuel auto operating cost 
per mile between 1991 and 2014.  The low nonfuel auto operating cost scenario is 
calculated as the minimum nonfuel cost between 1991 and 2014 (i.e., 5 cents per 
mile).  The high nonfuel auto operating cost scenario is calculated as the maximum 
nonfuel cost between 1991 and 2014 (i.e., 8 cents per mile).  The most likely value 
is the current nonfuel auto operating cost (i.e., 6 cents per mile). 

Figure D.5 Historical Nonfuel Operating Vehicle Cost 

 

Source: CPI, BLS, All Urban Consumer, National Average:  
http://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/publications/
national_transportation_statistics/html/table_03_17.html. 

D.6 RANGE OF AUTO OPERATING COST 
The following formulas were used to calculate the minimum, most likely, and 
maximum auto operating cost: 

Minimum Auto Operating Cost = ((Low CA Gas Price + No C&T Impact + No Increase 
in Federal Gas Tax)/High Fuel Efficiency) + Low Nonfuel Operating Costs 

Most Likely Auto Operating Cost = ((Most Likely CA Gas Price + Avg (C&T No 
Impact, C&T High Impact) + No Increase in Federal Gas Tax)/Most Likely Fuel 

Efficiency) + Most Likely Nonfuel Operating Costs 

High Auto Operating Cost = ((High CA Gas Price + C&T High Impact) + Increase in 
Federal Gas Tax)/Low Fuel Efficiency) + High Nonfuel Operating Costs 
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Table D.1 gives the auto operating cost component values and the resulting 
minimum, most likely, and maximum auto operating cost for each forecast year 
before adjusting for the impact of autonomous and shared vehicles for 2040 
forecasts. 

Table D.1 Range of Auto Operating Cost for each Forecast Year by Auto 
Operating Cost Component 
2015 Dollars 

 Minimum Most Likely Maximum 

2025 Auto Operating Cost ($/mile) $0.15 $0.20 $0.31 

California Gas Price (CA Gas Price) $2.78 $3.41 $5.28 

Cap & Trade (C & T Impact) $0.00 $0.32 $1.00 

Increase in Federal Gas Tax $0.00 $0.00 $0.12 

Fuel Efficiency (mpg) 29.4 28.5 28.2 

Total Fuel Operating Cost ($/mile) $0.09 $0.13 $0.23 

Nonfuel Operating Cost ($/mile) $0.05 $0.06 $0.08 

2029 Auto Operating Cost ($/mile) $0.14 $0.19 $0.30 

California Gas Price (CA Gas Price) $2.83 $3.63 $5.73 

Cap & Trade (C & T Impact) $0.00 $0.35 $1.09 

Increase in Federal Gas Tax $0.00 $0.00 $0.12 

Fuel Efficiency (mpg) 32.7 31.6 31.2 

Total Fuel Operating Cost ($/mile) $0.09 $0.13 $0.22 

Nonfuel Operating Cost ($/mile) $0.05 $0.06 $0.08 

2040 Auto Operating Cost ($/mile) $0.13 $0.19 $0.32 

California Gas Price (CA Gas Price) $3.00 $4.54 $7.32 

Cap & Trade (C & T Impact) $0.00 $0.43 $1.39 

Increase in Federal Gas Tax $0.00 $0.00 $0.12 

Fuel Efficiency (mpg) 38.6 37 36.1 

Total Fuel Operating Cost ($/mile) $0.08 $0.13 $0.24 

Nonfuel Operating Cost ($/mile) $0.05 $0.06 $0.08 
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E. Coefficient on Transit Access-
Egress Time/Auto Distance 
Variable 

Between some regions in California, especially in the VtoV scenario, individuals 
who wish to travel primarily by transit to reach their destination must transfer 
from a high-speed rail (HSR) bus or conventional rail (CVR) system before or after 
traveling on HSR.  There is uncertainty around how the need to make these 
transfers affects the overall desirability of traveling by HSR.  The uncertainty in 
the desirability of travel by HSR, when the CVR or HSR bus leg of the journey is 
relatively long in relation to the HSR travel length, has an impact on ridership and 
revenue.  Thus, this uncertainty was included as a potential risk variable. 

E.1 OPTIONS FOR ADDRESSING RISK 

IN UNCERTAINTY ANALYSIS 
Two primary options were considered for addressing the transit transfer concern 
in the context of the risk analysis.  The first option considers a range for the 
constant associated with the transit access/egress to the HSR main mode.  The 
main advantage of this approach is its simplicity.  The range used for the constant 
would come directly from conversion of a penalty value (in minutes) to utility.  
The main disadvantage is that the same range would need to be applied to all 
transfers between access/egress transit modes and HSR.  This means that the 
penalty would apply equally to transfers between local transit (e.g., someone 
taking a city bus from their home to the station) and HSR and transfers between 
CVR or HSR bus and HSR with longer access trips.  Transfer between local transit 
and CVR exist today and thus are accounted for within the model estimation of 
this variable, while transfers between CVR or HSR bus to HSR have not been 
observed in the estimation dataset.  Moreover, it means the penalty would not vary 
on the basis of how long the trip was or how much of the trip was transit versus 
HSR. 

The second option considers a range for the parameters associated with transit 
access/egress travel times relative to OD distances.  This variable appears in the 
access and egress modal utility functions as follows: 

𝜷 × MAX(𝟎,
[𝑨𝒄𝒄 𝒐𝒓 𝑬𝒈𝒓 𝑻𝒊𝒎𝒆]

[𝑶𝑫 𝑫𝒊𝒔𝒕𝒂𝒏𝒄𝒆]
− 𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅) 

In the base model, several threshold parameter options were tested in model 
estimation, and a value of 0.2 was ultimately identified.  The values of beta (the 
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variable coefficient) were estimated directly and were found to be negative.  
Separate coefficients were estimated for auto access/egress modes versus nonauto 
access/egress modes (transit and walk/bike), with the magnitude of auto 
coefficients estimated to be much larger.  This variable essentially provides a 
disincentive for selecting a main mode that requires a long access or egress time, 
relative to the entire trip length. 

The main advantage of the second option is that this differentiation would 
naturally occur between local transit and longer CVR or HSR bus connections.  
Since local transit connections would typically be very short distance and CVR or 
HSR bus may be short or long distance, the “penalty” associated with transit 
access/egress would reflect the access/egress mode’s overall share of the total trip 
length.  The second option is more appropriate for the risk analysis.  The 
uncertainty associated with the variable is only applied for the HSR main mode 
(i.e., not air or CVR). 

E.2 DEVELOPMENT OF THE RANGE IN THE RISK 

VARIABLE PARAMETERS 
Figures E.1 and E.2 show the variable’s effect under the current model 
specification (in terms of equivalent minutes19 of travel time) for the recreation/
other purpose (the results are very similar for business and commute trip 
purposes).  The first plots penalty versus origin-destination (OD) distance for 
constant egress times, and the second plots penalty versus egress time for constant 
OD distance values.  The same concepts apply to the access end of trips.  The egress 
end is shown only as an example; the access time graph looks identical. 

In both figures, certain regions of the graphs suggest very high penalties for certain 
types of trips.  For instance, Figure E.1 shows very high penalties for the 100-
minute egress line when OD distance is less than 100 miles.  Likewise, Figure E.2 
shows very high penalties for the 50-mile OD distance line when egress time is 
high20.  Travelers typically do not make trips of this nature, since other main modes 

                                                      

19 “Equivalent minutes of travel time” is estimated by dividing a constant or a variable by 
the coefficient associated with travel time.  Equivalent minutes of travel time provides a 
convenient way to measure the magnitude of “unexplained variation” of a model 
constant using an understandable metric and to compare values among different 
models.  Equivalent minutes of travel time is a derived measures that can be computed 
for any model variable.  So, for example, a $72 HSR fare (2005 dollars) for an interchange 
in the recreation/other mode choice model would equate to 337 equivalent minutes of 
travel time while the implied equivalent minutes of travel time savings for group travel 
in an auto for the interchange would equate to a savings of 619 equivalent minutes of 
travel time. Note, however, these variables are important for their contributions to the 
mode choice utility function, not as direct measures of travel time. 

20 A chart of penalty versus OD distance for constant access time would look identical to 
the chart for egress time.   
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would be highly favored, so these penalty values are very unlikely to be actually 
applied. 

Figure E.1 Penalty versus OD Distance for Constant Egress Times 

 

 

Figure E.2 Penalty versus Egress Time for Constant OD Distance Values 
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reasonable range for the variable parameters.  In the French experience, moving 
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of total travel time, but did not result in increased ridership.  The observed “90-
minute penalty” in France served as a rough benchmark for determining a lower 
bound on the model parameters.  In the French experience, the trip between Paris 
and Grenoble via Lyon is about 350 miles total, with about 90 minutes of 
conventional rail time (Lyon to Grenoble).21  Using an OD distance of 350 miles, 
an egress time of 90 minutes, and the aforementioned 90-minute savings from the 
French experience, several approaches were tested to achieve an appropriate 
lower bound for the variable. 

There are two ways uncertainty affects the variable.  First is the coefficient 
associated with the variable.  Second, the variable uses a threshold value, set such 
that the variable takes a value of zero when the ratio of access/egress time to 
distance is less than 0.2.  The threshold value was set in model estimation by trial 
and error.  The value of 0.2 was selected because it fit the data better than other 
potential values.  However, like the coefficient, there is uncertainty associated with 
it. 

Several options were considered for setting lower bounds for the threshold 
variable.  Based on a review of potential options, threshold values of 0.05 and 0.10 
were tested.  In both cases, the coefficient on the variable was selected so that the 
value of the penalty was about 60 minutes for a case similar to the French example.  
A 60-minute penalty was used instead of the 90-minute penalty observed in the 
French experience, because it offered more reasonable model behavior overall, and 
it was not desirable to change the long-distance models in unreasonable ways to 
match a single observed data point.  Figure E.3 and Figure E.4 plot the penalty 
versus egress time to OD distance ratios for baseline, drive access/egress 
variables, transit access/egress variables with threshold value of 0.05, and transit 
access/egress variables with threshold value of 0.10.  Figure E.3 shows the results 
for the business/commute purpose, and Figure E.4 shows results for the 
recreation/other purpose.  The drive access/egress variable is plotted for 
comparison purposes only, and has no bearing on the variable discussed in this 
section.  It applies when the access/egress mode is an auto mode (rather than 
transit). 

                                                      

21 The OD distance and egress times cited for the French experience are approximate, as it 
is based on Google maps and train timetables.  While the network distance is about 
350 miles between Paris and Grenoble, the straight line distance is only 300.  And, some 
egress train options took longer than 90 minutes, up to and over 120 minutes. 
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Figure E.3 Business/Commute Penalty versus Egress Time to OD Distance 
Ratios for Baseline, Drive Access/Egress Variables, and Transit 
Access/Egress Variable Options 

 

 

Figure E.4 Recreation/Other Penalty versus Egress Time to OD Distance 
Ratios for Baseline, Drive Access/Egress Variables, and Transit 
Access/Egress Variable Options 
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E.3 RANGE OF COEFFICIENT ON TRANSIT ACCESS-
EGRESS TIME/AUTO DISTANCE VARIABLE 
The transit access/egress variable with threshold value of 0.10 was chosen as the 
low scenario.  This threshold was chosen over 0.05, because it causes less 
disruption to the relationships between the drive and transit access/egress 
variables for trips with shorter access/egress (e.g., when the ratio of access or 
egress time to OD distance is around 0.1 to 0.2).  The coefficient value is set to      -
2.0 for business/commute purpose and -1.3 for recreation/other purpose.  As 
described above, these were set to achieve penalty values of about 60 minutes.  The 
coefficient and threshold value are assumed to vary in parallel (i.e., perfect 
correlation) for the full model runs and Monte Carlo simulation. 

The maximum threshold and coefficient values were set identical to the base/most 
likely values.  There is no evidence to suggest that the penalty to transfer from 
transit to HSR should be less than that used for CVR and air. 
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F. Number and Distribution 
of Statewide Households 
and Employment 

The risk analysis conducted to create the 2014 Business Plan (BP) forecasts of 
statewide population, household, and employment were used as a starting point 
for developing the Draft 2016 BP risk analysis forecasts.  The 2014 BP forecasts 
were improved by additional historical data to 2014 and obtaining new forecasts 
from a variety of sources: 

 New national forecast was obtained from the U.S. Census Bureau, showing a 
reduction in national population projections (U.S. Census, 2014). 

 New statewide forecasts were obtained from the Department of Finance (DOF, 
2014) and the California Economic Forecast (CEF, 2013 and 2014).  These 
forecasts were mostly unchanged through year 2025, but decreased beyond 
year 2025, resulting in a one-percent decrease in forecasted population in year 
2040. 

 New regional forecasts were obtained from the Sacramento Area Council of 
Governments (SACOG) and Southern California Association of Governments 
(SCAG). 

Figure F.1 shows the range in statewide forecasts for each of the obtained data 
sources.  County-level population forecasts were assembled from the following 
sources: 

 California Statewide Travel Demand Model (CSTDM); 

 U.S. Census Bureau; 

 Moody’s Analytics (Economy.com); 

 California DOF; 

 California Employment Development Department; 

 CEF; 

 University of Southern California (Price School); and 

 Metropolitan Planning Organizations (MPO):  Metropolitan Transportation 
Commission (MTC), SACOG, San Diego Association of Governments 
(SANDAG), SCAG, and the San Joaquin Valley MPOs. 
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Figure F.1 Statewide Population Forecasts by Source of Forecast 

 

 

The High Range forecast follows the CSTDM compound annual growth rate 
(CAGR).  The Maximum forecast was adjusted up from the High Range forecast 
to account for possible, but unlikely events, such as comprehensive immigration 
reform, increased lifespans, increased fertility rates, and balanced domestic 
migration.  The Most Likely forecast is developed by combining 20-year moving 
average growth rates from the U.S. Census (National) forecasts and the DOF 2014 
(California). .  The Low Range forecast CAGR matches the U.S. Census (National) 
20-year moving average growth rate in the short-term and decreases to a CAGR 
slightly below the U.S. Census rate in the long-term. The Minimum forecast was 
adjusted down from the Low Range forecast to account for possible, but unlikely 
events, such as substantial tightening of immigration policy and reduced lifespan.  
Table F.1 describes the population forecast assumptions, CAGR, and Year 2040 
forecast for each forecast level.  Figure F.2 shows the population growth rates for 
each of the range in forecasts. 
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Table F.1 Statewide Population Forecasts 

 Source of Forecast 
CAGR  

(2010 to 2040) 

2040 
Forecast 
California 

Population 

Maximum  Statewide population total matched to DOF “actuals” 
through 2014. 

 For 2015 to 2020, statewide population growth follows 
the CSTDM 20-year moving average growth rate. 

 For 2021 to 2040, statewide population growth follows 
the CSTDM 20-year moving average growth rate plus 
additional 50,000 residents per year (2021), increasing 
to 150,000 residents per year in 2050. 

1.16% 52 million 

High Range  Statewide population total matched to DOF “actuals” 
through 2014. 

 For 2015 and beyond, statewide population growth 
follows the CSTDM 20-year moving average growth 
rate. 

1.00% 50 million 

Mid Range  Statewide population total matched to DOF “actuals” 
through 2014. 

 Between 2015 and 2023, statewide population growth 
follows the midpoint between the U.S. Census (National) 
and DOF 2014 (California) 20-year moving average 
growth rates.  (The two growth rates converge at 0.82 
percent in 2023.) 

 Beyond 2023, statewide population growth follows the 
DOF 2014 20-year moving average growth rates, 
decreasing to 0.61 percent by 2050. 

0.82% 47 million 

Low Range  Statewide population total matched to DOF “actuals” 
through 2014. 

 Between 2015 and 2020, statewide population growth 
follows the U.S. Census (National) 20-year moving 
average growth rate. 

 Beyond 2020, statewide population growth steadily 
decreases from the U.S. average national growth rate 
(0.85 percent) to 0.1 percent below the U.S. average 
national growth rate by 2050.  The resulting 2050 growth 
rate is 0.42 percent (20-year moving average). 

0.63% 45 million 

Minimum  Statewide population total matched to DOF “actuals” 
through 2014. 

 Between 2015 and 2020, statewide population growth 
follows the U.S. Census (National) 20-year moving 
average growth rate.  (Same as low range.) 

 For 2021 to 2040, statewide population growth follows 
the Low Range 20-year moving average growth rate 
PLUS 25,000 fewer residents per year (2021) 
decreasing to 100,000 fewer residents per year in 2050. 

0.58% 44 million 
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Figure F.2 Range of Population Growth Rates (20-Year Moving Average) 

 

 

Once the range of population forecasts were developed, the population forecasts 
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Moody’s 2013) to the minimum statewide population totals. 
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holding thereafter). 
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and employment forecasts utilized for the risk analysis. 
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Table F.2 Maximum, Most Likely, and Minimum Population, Household 
and Employment Projections 

Year 

Maximum Projections Most Likely Projections Minimum Projections 

Pop HH Emp Pop HH Emp Pop HH Emp 

2040 52.013 17.840 22.928 47.022 16.128 20.728 44.022 14.977 19.406 
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G. Quantifying the Effects 
of Autonomous and Shared 
Use Vehicles on Year 2040 
Risk Variables 

By 2040, it is likely that autonomous vehicles (AV) and shared-use vehicles will 
compose some share of all automobile travel.  AVs could have important features 
that change the auto mode’s perception among travelers, while the increase in 
shared-use vehicles could directly affect the auto operating cost of travelers, which 
may impact HSR ridership and revenue.  The risk analysis framework considers 
two key features of the auto mode that might change as a result of AVs and shared-
use vehicles:  1) auto travel times, and 2) auto operating costs. 

G.1 AUTONOMOUS VEHICLE BACKGROUND 

AND RESEARCH 
One of the promises of AV technology is to improve travel speeds by connecting 
vehicles, allowing them to travel much closer to one another at high speeds, 
effectively increasing capacity and reducing congestion.  Most of the travel time 
benefits of AVs rely on AVs representing a clear majority of autos, with the most 
benefits really being achieved once market penetration reaches about 75 percent.  
It is possible that AVs could contribute to congestion in the near term, depending 
on the programs that control them and how well they are able to interact with non-
AVs.22 

Auto operating costs can be improved for AVs via better gas mileage, lower 
insurance premiums if crashes can be reduced, and reduced parking costs, as AVs 
could potentially drop a passenger off and find free or cheaper parking.  The 
possibility of increased vehicle miles traveled (VMT) due to taxiing with no 
passenger (e.g., to park) could effectively increase operating costs, though this 
would require it being legal for AVs to travel without an operator, which could be 
further into the future than 2040. 

There are other potential characteristics of AVs that could influence long-distance 
auto trips, but are not included in the risk analysis model.  The driving experience 
may be less onerous, as one can engage in other activities during travel.  While this 

                                                      

22 Litman, Todd.  Autonomous Vehicle Implementation Predictions:  Implications for 
Transport Planning.  February 27, 2015.  Victoria Transport Policy. 
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might be true, auto passengers already have this freedom, and typically do not 
consider them differently in travel models.  Moreover, high-speed rail (HSR) riders 
also would have this freedom, but this distinction is not made for HSR travel times 
in the model either.  Toll roads/lanes may be developed specifically for use by AV 
motorists.  The benefit of such facilities to AV motorists would be higher speeds 
achieved with all vehicles in the lanes being connected.  However, this is unlikely 
to occur by year 2040.  It would overcoming many issues, including building or 
converting AV lanes at the detriment of general purpose lanes at a very significant 
scale to be useful for long-distance travel.  Therefore, we excluded this uncertainty 
as well.  The reliability of auto travel may increase due to a significant reduction 
in the number of traffic incidents.  While we directly account for the reliability of 
the public modes in the model, auto reliability is embedded within the constants. 

G.2 AV MARKET PENETRATION ASSUMPTIONS 
AV market penetration is a key risk variable that informs both the uncertainty in 
auto travel times and the uncertainty in auto operating costs.  For instance, if 
market penetration of AVs is 0 percent, then we expect no change to travel times 
or operating costs.  However, if market penetration is 50 percent, we expect 
improved travel times and some effect on operating costs.  Bierstedt et al. (2014) 
estimate that, under the right circumstances, AVs could represent 50 to 75 percent 
of the auto market by 2035 to 2045.23  Litman (2015) forecasts that 30 percent 
market penetration will occur in the 2040s (but 40 percent of all travel), 50 percent 
market penetration will occur in the 2050s, and 75 percent will not occur until 
2060.24  Milakis et al. (2015) estimates that market penetration will be between 
1 percent and 11 percent by 2030 and 7 percent and 61 percent in 2050, depending 
on a number of factors.25  Based on this research, it is assumed that the market 
penetration of autonomous vehicles among the owned vehicle market is a 
triangular distribution with minimum 10 percent, maximum 75 percent, and most 
likely 35 percent. 

                                                      

23 Bierstedt, J., A. Gooze, C. Gray, J. Peterman, L. Raykin, and J. Walters, 2014.  Effects of 
Next Generation Vehicles on Travel Demand and Highway Capacity by FP Think 
Working Group Members.  FP Think Working Group. 

24 Littman, T., 2015.  Autonomous Vehicle Implementation Predictions:  Implications for 
Transport Planning.  February 27, 2015.  Victoria Transport Policy. 

25 Milakis, D., M. Snelder, B. van Arem, B. van Wee, and G. Correia.  2015.  Development 
of automated vehicles in the Netherlands:  scenarios for 2030 and 2050. Delft, The 
Netherlands:  Delft University of Technology. 
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G.3 SHARED-USE VEHICLE MARKET PENETRATION 

ASSUMPTIONS 
The shared-use market penetration was calculated using a series of assumptions.26  
It was asserted that the long-distance trip shared-use market would vary by area 
type of the household, with households in denser areas being more likely to use 
shared-use vehicles.  For each area type, a low, most likely, and high value of 
shared-use vehicle usage was asserted based on professional judgment.  From 
those assertions, a weighted low, most likely, and high value was computed based 
on long-distance trip shares, as shown in Table G.1.  The market penetration share 
is assumed to have a triangular distribution. 

Table G.1 Shared-Use Market Penetration by Area Type 

Area Type 

Long-
Distance 

Trips 

Long-
Distance 

Trip Share 

Long-Distance Auto Trips Using Shared-Use 
Vehicles in Year 2040 

Low Most Likely High 

CBD-Bay Area 74,684 3% 0.2 0.3 0.5 

Urban-Bay Area 10,0619 5% 0.1 0.2 0.45 

CBD-Other 71,068 3% 0.1 0.2 0.45 

Urban-Other 226,623 11% 0.05 0.1 0.35 

Small Urban 157,145 7% 0 0.1 0.2 

Suburban 1,055,053 49% 0 0 0.1 

Rural 461,141 21% 0 0 0.1 

Weighted Total   2% 5% 20% 

 

G.4 DEVELOPMENT OF AUTO OPERATING COST 

UNCERTAINTY 
As discussed in Appendix D, the auto operating cost for privately owned non-AVs 
is comprised of different components.  These components are treated together as 
one auto operating cost, which is referred to as 𝑂𝐶𝐵𝑎𝑠𝑒.  Additional uncertainty 
was added to pertinent subcomponents, representing the uncertainty in auto 
operating costs due to AV adoption and shared-use vehicles.  Key variables we 
considered were the level of AV market penetration and shared-use market share. 

                                                      

26 The market penetration rates used in this analysis are in addition to the year 2010 (i.e., 
model calibration year) market penetration for shared-use vehicles used for long-
distance trips, such as rental cars. 
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Because the marginal cost of trips made by shared-use vehicle will include 
additional costs over and above typical operating costs, those additional costs 
were considered.  For instance, shared-use trips will be charged a surcharge, 
similar to a toll either based on the amount of time the vehicle is used or distance 
traveled.  To keep the surcharge in the same units as auto operating cost, it is 
assumed the surcharge is based on distance traveled and would incur a charge per 
mile traveled.  Ranges for cost per mile are predicted by Litman to be between 
$0.60 and $1.00 per mile, though this seems high given that current shared-use 
costs are on the order of $0.15 to $0.60 per mile.27  Given that AVs may dominate 
this market and might have higher purchase prices, it is conceivable that the costs 
will be higher by 2040, but probably not as high as forecast by Litman.  It is, 
therefore, assumed that shared-use cost per mile is a uniform distribution with 
minimum $0.18 and maximum $0.85 (2014 dollars). 

AVs are predicted to drive in a more energy efficient manner compared to non-
AV drivers due to a decrease in stop-and-go tendencies.  Fuel economy could 
increase by as much as 23 to 39 percent.28  It is assumed that fuel economy 
improvements of AVs are uniform distribution with minimum 10 percent and 
maximum 50 percent.  For the use in the risk analysis, the 50-percent improvement 
is a more conservative assumption than the Eno prediction.  As discussed in 
Appendix D, fuel costs represent approximately 60 percent of the base auto 
operating costs.  It is assumed that only fuel costs would be affected by fuel 
economy improvements resulting from AV use. 

The overall average auto operating cost is computed as a blended average for each 
market as follows: 

𝑂𝐶𝑎𝑣𝑔 = 𝑂𝐶𝑛𝑜𝑛𝐴𝑉𝑛𝑜𝑛𝑆𝑉 + 𝑂𝐶𝐴𝑉𝑛𝑜𝑛𝑆𝑉 + 𝑂𝐶𝑛𝑜𝑛𝐴𝑉𝑆𝑉 + 𝑂𝐶𝐴𝑉𝑆𝑉 

Here, 𝑂𝐶𝑛𝑜𝑛𝐴𝑉𝑛𝑜𝑛𝑆𝑉 is the portion of operating costs attributable to owned non-
AVs and is computed as: 

𝑂𝐶𝑛𝑜𝑛𝐴𝑉𝑛𝑜𝑛𝑆𝑉 = (1 − 𝑆𝑆𝑉) ∗ (1 − 𝑆𝐴𝑉) ∗ 𝑂𝐶𝐵𝑎𝑠𝑒 

𝑆𝑆𝑉 is the market share of long-distance trips that use a shared vehicle (i.e., 
(1 − 𝑆𝑆𝑉) is the market share of long-distance trips that use a nonshared vehicle), 
𝑆𝐴𝑉 is the market penetration of AVs among nonshared use vehicles, and 𝑂𝐶𝐵𝑎𝑠𝑒 is 
the base value of operating cost that comes from the distribution described in 
Appendix D for other model years. 

𝑂𝐶𝐴𝑉 is the portion of operating costs attributable to owned AVs and is computed as: 

𝑂𝐶𝐴𝑉𝑛𝑜𝑛𝑆𝑉 = (1 − 𝑆𝑆𝑉) ∗ 𝑆𝐴𝑉 ∗ 𝑂𝐶𝐵𝑎𝑠𝑒 ∗ ([1 − 𝑆𝐵𝑎𝑠𝑒,𝐹𝐶] + [
𝑆𝐵𝑎𝑠𝑒,𝐹𝐶

1 + 𝐹𝐸𝐴𝑉
]) 

                                                      

27 Littman, T., 2015.  Autonomous Vehicle Implementation Predictions:  Implications for 
Transport Planning.  February 27, 2015.  Victoria Transport Policy. 

28 Eno Center for Transportation, 2013.  Preparing a Nation for Autonomous Vehicles:  
Opportunities, Barriers and Policy Recommendations.  Eno Center for Transportation, 
October 2013. 
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𝑆𝐵𝑎𝑠𝑒,𝐹𝐶 represents the share of base auto operating cost attributable to fuel.  𝐹𝐸𝐴𝑉 
is the fuel economy improvements achieved by AVs, on average.  𝑂𝐶𝑠𝑣𝑂𝐶𝑛𝑜𝑛𝐴𝑉𝑆𝑉 +
 𝑂𝐶𝐴𝑉𝑆𝑉 is the contribution of shared-use vehicles to average auto costs and is 
computed as follows: 

𝑂𝐶𝑛𝑜𝑛𝐴𝑉𝑆𝑉 +  𝑂𝐶𝐴𝑉𝑆𝑉 =  𝑆𝑆𝑉 ∗ (1 − 𝑆𝐴𝑉) ∗ 𝐶𝑃𝑀𝑠𝑣 + 𝑆𝑆𝑉 ∗ 𝑆𝐴𝑉 ∗ 𝐶𝑃𝑀𝑠𝑣 

𝐶𝑃𝑀𝑠𝑣 is the cost per mile surcharge of shared vehicles. 

Figure G.1 shows the distribution of auto operating costs in 2040.  The black line 
corresponds to the distribution of the base auto operating costs, and the red line is 
the overall average auto operating cost distribution, based on the first, blended 
equation outlined above.  The minimum auto operating cost is 13 cents per mile, 
the most likely is 21 cents per mile, and the maximum is 37 cents per mile (2015 
dollars). 

Figure G.1 Distribution of Auto Operating Costs in Year 2040 

 

 

G.5 DEVELOPMENT OF AUTO TRAVEL TIME 

UNCERTAINTY 
The current congested travel times forecast for 2040 are considered to be the 
maximum auto travel times that are likely to occur in year 2040.  While it is 
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possible that AVs increase congestion in the short-term, there is minimal risk in 
that direction. 

On the other end of the spectrum, free-flow travel time is considered as the 
absolute minimum travel times that could occur.  In theory, it would actually be 
possible to achieve better speeds than free-flow speeds at very high levels of AV 
market penetration.  However, that is unlikely by 2040 given limitations due to 
market penetration and highway design.  Thus, free-flow speeds represent a 
reasonable set of minimum values. 

The AV effect on auto travel times was modeled using a weighted average of 
congested and free-flow travel times, using a travel time index varying between 0 
and 1 based on the following: 

 At zero, congested travel times are observed; 

 At one, free-flow travel times are observed; and 

 At 0.5, the midpoint travel times between congested and free-flow are 
observed. 

There are two key sources of uncertainty that affect the travel time index 
described: 1) market penetration; and 2) the impact of AV travel times at each 
market penetration level.  The greater the market penetration, the closer travel 
times will be to free-flow travel times.29  As discussed above, 75 percent market 
penetration is the absolute maximum that may be achieved by 2040. 

While market penetration is important, there is no consensus of how much impact, 
for example, 50 percent AV market penetration will have on auto travel times.  It 
is known that 0 percent market would result in no change to travel times, and 
100 percent market would result in travel speeds that meet or possibly exceed free-
flow speeds.30  But there is uncertainty as to the effect of AVs for every other value 
in the middle. 

Each source of uncertainty was included into the Monte Carlo analysis, using the 
following function: 

𝑖𝑛𝑑𝑒𝑥 =
B(𝑆𝐴𝑉; 𝛼, 𝛽)

B(𝛼, 𝛽)
 

                                                      

29 Effects of Next Generation Vehicles on Travel Demand and Highway Capacity by FP 
Think Working Group Members:  Jane Bierstedt, Aaron Gooze, Chris Gray, Josh 
Peterman, Leon Raykin, and Jerry Walters.  January 2014. 

30 Nevertheless, AV speeds will be constrained by design speeds of highways.  While these 
are higher than posted speed limits, they will limit the maximum free-flow speeds AVs 
can achieve. 
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Here, B() is the beta function, 𝑆𝐴𝑉 is the market penetration of AVs, and 𝛼 and 𝛽 
are random parameters.31  This is the cumulative distribution function (cdf) for the 
beta distribution, but it is not being used strictly as a distribution here.  As shown 
in the equation, the market penetration is one input.  The other inputs are 𝛼 and 
𝛽, which are shape parameters to the beta function, controlling the shape of the 
travel time response to AV market penetration.  They are treated as random 
parameters in the MC analysis.  In other words, the actual impact that AVs have 
on travel times is taken to be uncertain.  The distributions of these parameters are 
described in more detail below. 

The effect of market penetration on travel time may be different depending on 
whether a vehicle is traveling on a freeway compared to an arterial.  Speed 
improvements will likely be realized at much lower market penetrations on 
freeways compared with arterials, where more advanced technology might be 
required to realize improved travel speeds.  Thus, the relationship between market 
penetration and travel time is segmented across freeways and arterials. 

As described above, 𝛼 and 𝛽 are treated as random parameters to the MC analysis.  
They are responsible for the overall shape of the travel time response to AV market 
penetration.  The distributions for each parameter were set using professional 
judgment by examining the resulting shapes of the travel time response to AV 
market penetration under different assumptions about the parameters.  The mean 
values of 𝛼 and 𝛽 are set at 3 and 1.25 on freeways, and both are uniformly 
distributed with minimums of 2 and 0.75, respectively, and maximums of 4 and 
1.75, respectively.  For arterials, a fixed value of 0.5 is used to factor the values 
obtained for freeways.  This is needed since the experimental design can handle 
only a single auto travel time index variable.  By using a fixed factor, freeway and 
arterial indices are perfectly correlated, effectively making them a single variable. 

Figure G.2 plots travel time index variables against market penetration for 
freeways and arterials.  As evidenced by the figure, given a value of market 
penetration, there remains uncertainty in the indices, which results from 
randomness in 𝛼 and 𝛽.  The red lines in the figures show the mean index value at 
different levels of market penetration (using the mean values of 𝛼 and 𝛽).  These 
minimum, most likely, and maximum travel time index are shown in Table G.2. 

                                                      

31 Note that the same AV market penetration variable was used here as in the auto 
operating costs.  For auto operating costs, the market penetration referred specifically to 
AVs that are privately owned (non-shared-use).  Here, market penetration is being used 
to refer to the overall population of long-distance trips.  While, strictly speaking, these 
values would not typically be the same, here they are assumed to be identical, which is 
the same as assuming that AVs are represented equally in the shared-use market and 
privately owned market. 
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Figure G.2 Travel Time Index Variables versus Market Penetration 
for Freeways and Arterials 

 

 

Table G.2 Auto Travel Time Index Range for Freeways and Arterials 

Risk Variable Minimum Most Likely Maximum 

AV Market Penetration 0.100 0.350 0.750 

TT Index – Freeway 0.000 0.060 0.796 

TT Index – Arterial 0.000 0.030 0.398 
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H. Experimental Design 

H.1 FRACTIONAL FACTORIAL DESIGN 
Factorial designs are a classical design approach, originally developed for use with 
physical experiments.  They have a number of desirable properties.  First, they do 
not require a great number of runs per factor explored, at least if the number of 
factors is not too large.  Second, they are powerful in their ability to distinguish 
which factors are most important and which are of lesser importance.  And third, 
they can be setup to ensure that both main effects and interaction effects can be 
estimated. 

Full factorial designs also typically require a significant volume of runs when the 
number of factors is large.  In our case, we examined 10 factors, making a full 
factorial design infeasible.  Fractional factorial designs greatly reduce the number 
of runs required, but confound some interaction effects with other interaction 
effects and/or main effects (meaning we cannot identify the distinct effects).  
Different resolutions can be chosen for fractional factorial designs, which set the 
level of confounding, each requiring different numbers of runs.  In addition, 
factorial designs consider only two or three values, or levels, for each specific 
variable (the set of runs pairs different levels for each factor).  In a two-level design 
it is only possible to estimate linear effects for continuous variables.  For the 2016 
Draft BP analysis, a three-level design was used, where each variable takes on one 
of three values in each model run.  This allows two different slopes to be estimated 
in the meta-model.  The three-levels used to define the fractional factorial design 
correspond to the Minimum, Most Likely, and Maximum values for each variable 
discussed in the previous sections. 

Table H.1 shows the number of runs required for a three-level fractional factorial 
design with 10 factors, at three different resolutions.  About 10 risk variables were 
chosen for each model year, because including any additional variables in a 
Resolution IV design would require substantially more model runs (i.e., 243 runs). 
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Table H.1 Number of Runs for 10 Factors with Three Levels 

Design Resolution Runsa 

Resolution III allows the estimation of main effects, but these may be confounded by two-
factor interactions. 

27 

Resolution IV allows the estimation of main effects that are not confounded by two-factor 
interactions.  It allows the estimation of the two-factor interaction effects, but these may be 
confounded by other two-factor interactions. 

81 

Resolution V allows the estimation of main effects that are not confounded by two-factor and 
three-factor interactions.  It allows the estimation of two-factor interaction effects, which are 
not confounded by any other two-factor interactions. 

243 

a The required runs for 10 risk factors at different resolutions was obtained using SAS software. 

H.2 THREE-LEVEL RANDOM SAMPLING DESIGN 
One feature of factorial designs is that they are boundary designs.  That is, all runs 
in the experimental design are at the boundary of the variable space.  This is true 
even for most three-level designs, since every run will have at least one variable at 
a low or high boundary value.  While this does tend to bound the dependent 
variable (i.e., high-speed rail revenue), it potentially is inefficient, particularly 
since the MC analysis will focus on draws of the independent factors from inside 
those bounds. 

For computer experiments, so-called Sampling or “space-filling” designs also may 
be useful (Sacks et al., 1989).  The sampling design developed for this analysis is 
derived from the fractional factorial design described above, but instead of 
selecting fixed low, middle, and high values for each run, the sampling design uses 
these levels to partition the variable space.  This three-level random sampling 
design is necessary to better estimate nonlinearities and to ensure the entire 
solution space is represented.  The three-level random design uses the same 
fractional factorial design, but with two important changes: 

1. The input variables were reordered within the design.  For instance, instead of 
setting the business purpose HSR constant as the experimental design variable, 
it was set to the fifth variable.  This creates an entirely new set of experimental 
design runs with combinations of variables that did not appear in the original 
fractional factorial runs. 

2. Different values for the variable were used instead of repeating the same value 
multiple times so that we can add useful information to the estimation of our 
regression model.  Each time factor 𝑥 uses level -1 (Low), a particular value for 
factor 𝑥 was selected from the bottom third of its distribution.  Likewise, for 
Level 0 (Middle), the middle part of its distribution was selected and for 
Level 1 (High) the upper third of its distribution was selected.  This selection 
used a uniform distribution within each range level to help fill in more of the 
solution space. 
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To ensure the interior of the solution space was well-represented, and not biased 
toward the edges, it is essential to perform the same number of three-level random 
sampling runs as fractional factorial runs. 

H.3 TWO-STEP RISK ANALYSIS PROCESS 
The first step of the experimental design included running 81 runs using a 
fractional factorial three-level Resolution IV Design to estimate the existence of 
two-factor interaction effects.  For all alternatives and forecast years, the model 
that included significant interaction terms demonstrated illogical results 
compared to the main effects only model (i.e., the sign on the effects of certain 
variables changed and became counterintuitive for certain combinations of 
variable values).  In all cases, it was determined that a regression model without 
interaction terms produced more reasonable results than a model that also 
included interaction terms.  The results of the interaction models for the various 
alternatives/forecast years are discussed in Appendix I. 

As a result of the findings based on Step 1, the final experimental design for Step 2 
was modified to include 59 full model runs for each alternative and forecast year, 
as follows:32 

 27 model runs used fixed minimum, most likely, and maximum values of risk 
variables specified using a three-level Resolution III fractional factorial design.  
Only three of these model runs overlapped with the 81 model runs using the 
three-level Resolution IV Design 

 27 model runs sampled from low, mid, and high ranges of the risk variables, 
using the three-level random sampling design. 

 5 model runs representing extreme scenarios of full upside (3 runs) and full 
downside (2 runs); that is, all inputs in these runs were set to values that would 
either be favorable or unfavorable to HSR revenue.  The runs correspond to 
the following percentiles for each risk variable:  10, 25, 75, 90, and 100.  The 0th 
percentile run was not added because the experimental design included this 
run already, where all inputs are set to the “min” value, and the Minimum 
value always corresponded to the absolute min, unfavorable value for HSR 
revenue. 

The final experiment design includes both the Fractional Factorial design to help 
understand extreme values, tails of distributions, and the Sampling design, which 
helps fill in the space in the middle of the distribution where most results fall. 

                                                      

32 The original 81 runs developed in the first step were not used for the development of the 
final regression equations in order to reduce the number of random sampling designs 
needed.  To ensure the interior of the solution space was well-represented, and not biased 
toward the edges, it is essential to perform the same number of three-level random 
sampling runs as fractional factorial runs. 
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I. Regression Model 
with Interaction Effects 

A regression model to test for the presence of two-factor interaction effects was 
estimated for each of the model years using the 81 runs using a fractional factorial 
three-level Resolution IV Design.  This appendix lays out the consideration of 
regression meta-models with interaction effects, what their impact would have 
been, and the reasons why the non-interaction effect meta-models were more 
appropriate for use in the Monte Carlo simulation.  The interaction effects 
regression model took the following functional form: 

ln(Revenue) = Constant + β1 × Var1 + β2 × Var2…+ β10 × Var10+ δ1 × Varx × Vary 

For each forecast year, the interaction model was compared against the main 
effects to understand how the variable coefficients changed with the introduction 
of interaction effects.  The interaction model was developed using both a bottom-
up and top-down approach.  For the bottom-up approach each interaction term 
was added individually to the model.  The original or new model was selected that 
had the highest R2 value.  These steps were repeated with the remaining 
interaction terms until no remaining interaction terms were statistically 
significant.  The top-down approach, which introduced all interaction terms at one 
time and then systematically eliminated nonsignificant terms, produced the same 
results. 

I.1 INTERACTION EFFECTS MODEL INVESTIGATED 

FOR 2025 SILICON VALLEY TO CENTRAL VALLEY 

LINE 
Table I.1 shows the year 2025 VtoV model with interaction effects.  Compared to 
the main effects model the coefficients for variables not included in interaction 
terms remained stable while the coefficient for variables included in interaction 
terms changed substantially. 
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Table I.1 Year 2025 VtoV Interaction Effects Model 

 

Main Effects Modela Interaction Model 

Coefficient Coefficient t-Statistic 

Constant 19.938 89.9 19.664 80.7 

HSR Mode Choice Constant – 
Business 0.234 16.1 0.234 18.3 

HSR Mode Choice Constant – 
Commute 0.070 2.8 0.070 3.1 

HSR Mode Choice Constant – 
Recreation/Other 0.445 17.3 0.445 19.7 

Trip Frequency Constant – 
Business/Commute 0.491 6.3 0.491 7.1 

Trip Frequency Constant – 
Recreation/Other 0.558 2.7 0.558 3.1 

Auto Operating Cost 1.099 2.0 2.333 3.9 

HSR Fare 0.083 0.5 -0.128 -0.7 

HSR Headway -0.296 -5.1 -0.008 -0.1 

HSR Access-Egress Connectivity = 
Low -0.193 -2.6 -0.583 -1.5 

HSR Access-Egress Connectivity = 
High 0.011 0.1 0.800 3.5 

HSR Access-Egress by Transit 
Variable 1.164 1.6 -1.661 -1.2 

Interaction Terms     

Auto Operating Cost & High 
Connectivity 

  
-3.701 -3.5 

HSR Fare & Low Connectivity   0.632 1.8 

HSR Headway & Low Connectivity   -0.280 -2.2 

HSR Headway & High Connectivity   -0.142 -1.1 

HSR Headway & Acc/Egr Transit 
Variable 

  
2.952 2.2 

Model Statistics     

Sum of Squared Error 6.048 4.672 

R2 0.891 0.916 

a The main effects and interaction models shown are based on 81 BPM-V3 runs using a factional factorial 
design.  No range sampling has been performed.  The main effects model used for the risk analysis is based 
on 59 BPM-V3 runs = 27 with fractional factorial design + 27 with range sampling + 5 extreme value runs 

The interaction model produces results that are counterintuitive.  While the main 
effects model results are less precise (in terms of fitting full model run results), 
model sensitivities are all appropriate.  As one example, the Figure I.1 shows the 
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relative effect of the HSR access/egress transit variable on log revenue in the main 
effects, linear model.  Figure I.2 shows the relative impact of HSR access/egress 
transit variable on log revenue in the interaction model, for different values of the 
HSR headway.  The effect of the variable approaches zero as the slope of headway 
falls below 1.0.  This (and other similar results) does not match the behavior of the 
full model, and thus, the interaction model was rejected as the best model to use 
for risk analysis. 

Figure I.1 Relative Effect of the HSR Access/Egress Transit Variable on Log 
Revenue in Main Effects Model 
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Figure I.2 Relative impact of HSR Access/Egress Transit Variable on Log 
Revenue in the Interaction Model for Different Values of the HSR 
Headway 

 

I.2 INTERACTION EFFECTS MODEL INVESTIGATED 

FOR 2029 PHASE 1 
Table I.2 shows the year 2029 Phase 1 model with interaction effects.  Compared 
to the main effects model the coefficients for variables not included in interaction 
terms remained stable while the coefficient for variables included in interaction 
terms changed substantially and became difficult to interpret.  Coefficients for 
auto operating cost, HSR fare, airfare, and HSR access/egress transit variable 
become inflated and are offset by interaction variables. 

Table I.2 Year 2029 Phase 1 Main Effects and Interaction Effects Model 

 

Main Effects Modela Interaction Modela 

Coefficient t-Statistic Coefficient t-Statistic 

Constant 20.902 84.4 16.122 12.6 

HSR Mode Choice Constant – Business 0.167 15.9 0.167 18.2 

HSR Mode Choice Constant – Commute 0.071 3.8 0.071 4.4 

HSR Mode Choice Constant – Recreation/Other 0.402 21.6 0.402 24.8 

Trip Frequency Constant – Business/Commute 0.467 8.4 0.467 9.7 
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Main Effects Modela Interaction Modela 

Coefficient t-Statistic Coefficient t-Statistic 

Trip Frequency Constant – Recreation/Other 0.592 4.3 0.592 4.9 

Auto Operating Cost 1.339 3.5 10.788 3.7 

HSR Fare 0.237 1.9 3.070 2.8 

HSR Headway -0.167 -5.2 -0.016 -0.3 

Airfare 0.140 0.9 4.036 3.8 

HSR A-E Transit Variable 1.199 2.2 -2.702 -2.4 

Interaction Terms     

Auto Operating Cost & Airfare   -8.030 -3.3 

HSR Fare & Airfare   -2.408 -2.6 

HSR Headway & HSR A-E Transit Variable   3.001 3.8 

Model Statistics     

Sum of Squared Error 3.189 2.415 

R2 0.916 0.936 

a The main effects and interaction models shown are based on 81 BPM-V3 runs using a factional factorial 
design.  No range sampling has been performed.  The main effects model used for the risk analysis is 
based on 59 BPM-V3 runs = 27 with fractional factorial design + 27 with range sampling + 5 extreme value 
runs. 

The interaction model produces results that are counterintuitive.  While the main 
effects model results are less precise in terms of fitting full model run results, 
model sensitivities are all appropriate.  Figure I.3 shows the relative impact of 
airfare on log revenue in the interaction model, for different values of the HSR fare 
and operating cost.  The slope of airfare changes signs depending on the values for 
operating cost and HSR fare.  These results are illogical.  It does not make sense 
for an increase in airfare to result in a decrease in HSR revenue, as suggested when 
auto operating costs are $0.25 per mile and HSR fares are a factor of 1.25 from the 
base fare.  The interaction term between HSR headway and HSR access/egress 
transit variable also results in illogical implications for the effect of HSR access/
egress transit variable on HSR revenue for certain values of HSR headway.  Thus, 
the interaction model was rejected as the best model to use for risk analysis. 
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Figure I.3 Relative Impact of Airfare on Log Revenue in the Interaction 
Model for Different Values of the HSR Fare and Operating Cost 

 

I think it is worth closing with one sentence that interprets the chart above.  Or just 
moving some of the language in the paragraph above to below this figure. 

I.3 INTERACTION EFFECTS MODEL INVESTIGATED 

FOR 2040 PHASE 1 
Table I.3 shows the year 2040 Phase 1 model with interaction effects.  Compared 
to the main effects model the coefficients for variables not included in interaction 
terms remained stable while the coefficient for variables included in interaction 
terms changed substantially and became difficult to interpret.  Coefficients on auto 
operating cost and population/employment growth changed sign while the 
coefficient on the auto travel time index increased substantially. 

Table I.3 Year 2040 Phase 1 Main Effects and Interaction Effects Model 

 

Linear Modela Interaction Modela 

Coefficient t-Statistic Coefficient t-Statistic 

Constant 21.086 191.9 21.274 156.8 

HSR Mode Choice Constant – Business 0.179 14.4 0.179 15.8 

HSR Mode Choice Constant – Commute 0.079 3.6 0.079 4.0 
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HSR Mode Choice Constant – Recreation/
Other 

0.397 18.0 0.397 19.8 

Trip Frequency Constant – Business/
Commute 

0.481 7.6 0.481 8.3 

Trip Frequency Constant – Recreation/Other 0.642 4.0 0.642 4.4 

Auto Operating Cost 1.240 3.8 -0.186 -0.4 

HSR Fare 0.137 2.7 0.212 3.6 

HSR Headway -0.173 -4.5 -0.173 -5.0 

Population/Employment Growth 0.314 4.9 -0.068 -0.4 

Auto Travel Time Index -0.006 -0.1 -0.039 -0.2 

Interaction Terms     

Auto Operating Cost & Population/
Employment Growth 

  1.976 2.7 

Auto Operating Cost & Auto Travel Time   1.753 2.1 

HSR Fare & Auto Travel Time   -0.260 -2.1 

Model Statistics     

Sum of Squared Error 4.449 3.711 

R2 0.896 0.913 

a The linear and interaction models shown are based on 81 BPM-V3 runs using a factional factorial design.  
No range sampling has been performed.  The linear model used for the risk analysis is based on 
59 BPM-V3 runs = 27 with fractional factorial design + 27 with range sampling + 5 extreme value runs. 

The interaction model produces results that are counterintuitive.  Figure I.4 shows 
the relative impact of auto operating cost on log revenue in the interaction model, 
for different values of the population/employment growth and auto travel time 
index.  The slope of auto operating cost changes signs depending on the values for 
population/employment growth and auto travel time.  These results are illogical.  
It does not make sense for an increase in auto operating cost to result in a decrease 
in HSR revenue, as suggested when the growth index is 0.0 and the auto travel 
time index is 0.0.  In addition, the interaction terms between operating costs, HSR 
fares, and auto travel time also result in illogical implications for the effect of auto 
travel time on HSR revenue for certain values of operating costs and HSR fares.  
Thus, the interaction model was rejected as the best model to use for risk analysis. 
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Figure I.4 Relative Impact of Auto Operating Cost on Log Revenue 
in the Interaction Model, for Different Values of the Population/
Employment Growth and Auto Travel Time Index 
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J. Risk Variable Component 
Specification for Monte Carlo 
Simulation 

Table J.1 details the components of each risk variable, the range of values and 
distributions for each component, and correlation between distributions of risk 
variables.  Some risk factors include multiple components that are sampled in the 
Monte Carlo analysis.  For example, values are sampled from both the error 
component distribution and the terminal/wait time component distribution for 
the HSR Mode Choice Constant risk variable.  The sampled values are combined, 
as appropriate, prior to inputting the value into the regression model used for the 
Monte Carlo simulation.  Setting a positive correlation between two risk variable 
components results in the Monte Carlo simulation having a higher probability of 
sampling from the same point on the distribution (e.g., a 100-percent positive 
correlation would result in two risk variables always being chosen from the same 
percentile point on the distribution). 
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Table J.1 Risk Variable Distributions Used in Monte Carlo Analyses 

Risk Factor Components Years Minimum Most Likely Maximum Distribution Notes 

HSR Mode Choice 
Constant – 
Business 

Error Component All -2.335 0.0 2.335 PERT – 
Standard 

(Shape = 4) 

Unit = offset from calibrated coefficient. 

50% Correlation with Commute & Recreation/Other 
HSR Error Components 

Terminal/Wait Time All -0.3264 0.0 0.1632 Triangular Unit = offset from calibrated coefficient. 

100% Correlation with Commute & Recreation/Other 
Term./Wait Times 

HSR Mode Choice 
Constant – 
Commute 

Error Component All -1.222 0.0 1.222 PERT – 
Standard 

Unit = offset from calibrated coefficient. 

50% Correlation with Business & Recreation/Other 
HSR Error Components 

Terminal/Wait Time All -0.3264 0.0 0.1632 Triangular Unit = offset from calibrated coefficient. 

100% Correlation with Business & Recreation/Other 
Term./Wait Times 

HSR Mode Choice 
Constant – 
Recreation/Other 

Error Component All -1.354 0.0 1.354 PERT – 
Standard 

Unit = offset from calibrated coefficient. 

50% Correlation with Business & Commute HSR 
Error Components 

Terminal/Wait Time All -0.1388 0.0 0.0694 Triangular Unit = offset from calibrated coefficient. 

100% Correlation with Business & Commute 
Term./Wait Times 

Trip Frequency 
Constant – 
Business/
Commute 

Error Component All -0.278 0.0 0.278 PERT – 
Standard 

Unit = offset from calibrated coefficient. 

50% Correlation with Recreation/Other Error 
Components 

Economic Component 2025 

2029 

2040 

-0.233 

-0.201 

-0.246 

0.0 

0.0 

0.0 

0.165 

0.224 

0.209 

Triangular Unit = offset from calibrated coefficient. 

100% Correlation with Recreation/Other Economic 
Component 
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Risk Factor Components Years Minimum Most Likely Maximum Distribution Notes 

Trip Frequency 
Constant – 
Recreation/Other 

Error Component All -0.123 0.0 0.123 PERT – 
Standard 

Unit = offset from calibrated coefficient. 

50% Correlation with Business/Commute Error 
Components 

Economic 
Component1 

2025 

2029 

2040 

-0.070 

-0.068 

-0.087 

0.0 

0.0 

0.0 

0.052 

0.078 

0.071 

Triangular 100% Correlation with Business/Commute Economic 
Component 

Auto Operating 
Costs 

Combined 
Components 

2025 

2029 

2040 

0.15 

0.14 

0.13 

0.20 

0.19 

0.21 

0.31 

0.30 

0.37 

PERT – 
Shape=5 

 

2040 n/a 

Unit = 2015$/mile 

Full Model & Regression Model use 2005$, rather 
than 2015$.  Conversion at following rate 202.6 / 
250.404 based on CPI. 

2040 values used in Full Model Runs but not in Monte 
Carlo 

Auto Operating 
Costs Impacts of 
Autonomous and 
Shared-Use 
Vehicles 

Owned 
Nonautonomous 
vehicle auto operating 
cost 

2040 0.13 0.19 0.32 PERT – 
Shape=5 

Unit = 2014$/mile 

Used in Monte Carlo but not used in Full Model Runs 

Owned Autonomous 
Vehicle Market 
Penetration 

2040 0.10 0.35 0.75 Triangular Unit = Decimal percent of owned AVs used for long-
distance trips 

Used in Monte Carlo but not used in Full Model Runs 

AV Fuel Economy 
improvements 

2040 0.10  0.50 Uniform Unit = Decimal percent fuel economy improvements 
from base 

Used in Monte Carlo but not used in Full Model Runs 

Shared-use vehicle 
market share 

2040 0.02 0.05 0.20 Triangular Unit = Decimal percent of shared-used vehicles used 
for long-distance trips 

Used in Monte Carlo but not used in Full Model Runs 

Shared-use vehicle 
auto operating cost 

2040 0.18  0.85 Uniform Unit = 2014$/mile 

Used in Monte Carlo but not used in Full Model Runs 



 

 

D
raft 2

0
16

 C
aliforn

ia H
igh

-S
p

eed
 R

ail B
u

sin
ess P

lan
 R

id
ersh

ip
 an

d
 R

ev
en

u
e R

isk A
n

aly
sis 

J-4
  

C
am

brid
g

e S
y

stem
atics, In

c. 

Risk Factor Components Years Minimum Most Likely Maximum Distribution Notes 

HSR Fares n/a 2025 

2029 

2040 

0.846 

0.846 

0.647 

1.0 

1.0 

1.0 

1.275 

1.275 

1.881 

Triangular Unit = Factor from Base/Most Likely Value 

For 2040, more uncertainty regarding 

HSR Headway n/a 2025 

2029 & 
2040 

0.29 

0.65 

1.0 

1.0 

1.58 

2.25 

PERT – 
Standard 

Unit = Factor from Base/Most Likely Value 

HSR Connecting 
Service 

n/a 2022 & 
2024 

Scenario 1 – 
10% 

Scenario 2 – 
50% 

Scenario 3 – 
40% 

Multinomial Unit = 1 if Scenario is chosen, 0 otherwise 

HSR 
Access/Egress Via 
Transit Variable 

Business/Commute 
Coefficient 

2025, 
and 

2029 

-2.0 -1.215 -1.215 PERT – 
Standard 

Unit = coefficient 

Used in Full Model Run but not used in regression 

100% Correlation with Recreation/Other coefficient & 
Threshold parameter 

Recreation/Other 
Coefficient 

 -1.3 -0.88 -0.88 PERT – 
Standard 

Unit = coefficient 

Used in Full Model Run but not used in regression 

100% Correlation with Business/Commute coefficient 
& Threshold parameter 

Threshold Parameter  0.1 0.2 0.2 PERT – 
Standard 

Unit = threshold value 

Used in Full Model Run but not used in regression 

100% Correlation with Business/Commute coefficient 
& Recreation/Other coefficient 

Index Variable  -0.1 0.0 0.0 PERT – 
Standard 

Unit = index variable 

Not used in Full Model Runs but used in regression; 

Middle value set to 0.05 for Full Model Runs. 

Airfares  2029 1.0 1.2 1.33 Triangular Unit = Factor from Base 

Number and 
Distribution of 
Households 
throughout the 
State 

n/a 2040 0.0 0.402 1.0 Triangular Unit = index variable 
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Risk Factor Components Years Minimum Most Likely Maximum Distribution Notes 

Auto Travel Time Index Variable 2040 0.0 0.06 0.8 n/a Unit = index variable 

Arterial travel time index =.5*Freeway index, with 
100% correlation 

Used in Full Model Runs and Regression but not in 
Monte Carlo 

Autonomous Vehicle 
Market Penetration 

2040 0.1 0.35 0.75 Triangular Unit = Percent of AVs on roads 

Used in Monte Carlo but not used in Full Model Runs 

100% correlated with Owned autonomous vehicle 
market penetration used in auto operating cost 

alpha 2040 2.0 3.0 4.0 Uniform Unit = n/a 

Used in Monte Carlo but not used in Full Model Runs 

Beta 2040 0.75 1.25 1.75 Uniform Unit = n/a 

Used in Monte Carlo but not used in Full Model Runs 
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